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1. Introduction

The computation of structure functions is one of the challenging problems in hadronic physics.
It can be related to the operator product expansion (OPE) of the product of two conserved vector
currents between states of particles as nucleons or mesons. The OPE allows for the factorization
of two length scales: the short (high energy) scale is associated to c-number expansion coefficients
(Wilson coefficients) whereas the long (low energy) scale is put into the matrix elements of local
operators [1]. In the case of deep inelastic scattering - the relevant physical process to extract
structure functions - the short scale is defined by the large momentum transfer Q2 =−q2, the long
range scale is given by the hadronic mass P2 = M2

h .
In lattice simulations, structure functions are calculated via their moments Mn(q2). Their

generic form as determined by the OPE can be written as

Mn(q2) = C(2)
n (q/µ)A(2)

n (µ)+
C(4)

n (q/µ)

q2 A(4)
n (µ)+ . . . , (1.1)

where A(2)
n and A(4)

n are reduced nucleon matrix elements of local operators of twist-two and four,
respectively. C(2)

n and C(4)
n are the corresponding Wilson coefficients, µ is the renormalisation scale.

Usually, the Wilson coefficients are calculated perturbatively. On the other hand, the computation
of the hadronic matrix elements A(k)

n is intrinsically non-perturbative. In the last years lattice QCD
has been proven to be a very promising tool for this purpose [2].

In order to relate the computed quantities to physical observables one has to evaluate the
Wilson coefficients and the operator matrix elements in the same scheme. Furthermore, on the
lattice operators can mix with other operators of the same quantum numbers but with lower mass
dimensions. Both the coefficients of leading operators and the expectation values of higher twist
operators are plagued by unphysical renormalon contributions [3]. In the complete OPE sum these
contributions must cancel [4] which is not the case if one combines perturbative Wilson coefficients
and non-perturbative hadronic matrix elements. Therefore, if one is interested in contributions of
higher twist operators to the moments of structure functions as given in (1.1) it is best to carry out
the OPE completely non-perturbatively on the lattice. This results in the following form for the
moments

Mn(q2) = C(2)
n (a,q)A(2)

n (a)+
C(4)

n (a,q)

q2 A(4)
n (a)+ . . . , (1.2)

with a denoting the lattice spacing. However, A(4)
n (a) and C(2)

n (a,q) can be divergent due to mix-
ing of the twist-four operator with its twist-two counterpart, i.e. A(4)

n (a) ∼ 1/a2 and C(2)
n (a,q) ∼

1/(aq)2. So both the Wilson coefficients and the matrix elements must be computed non-perturbatively.
Starting point of the calculation is the OPE of the Compton scattering amplitude Wµν of a

photon (Ĵµ(q)) off a nucleon target (
∣

∣N(P)〉) with momentum P:

Wµν = 〈N(P)
∣

∣Ĵµ(q)Ĵ†
ν(q)

∣

∣N(P)〉 (1.3)

= ∑
m,n

Cm
µν,µ1,...,µn

(q/µ)〈N(P)
∣

∣O(µ)m
µ1,...,µn

∣

∣N(P)〉 . (1.4)

The sum in (1.3) runs over all possible operators Om
µ1,...µn

of spin n. The index m distinguishes
operators of the same spin. In order to have reasonable convergence properties of the OPE (so that
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it makes sense to truncate the expansion at a particular operator dimension) we need small P, i.e.
P2 � q2. Moreover, Wµν should not suffer from large lattice artefacts, so both P and q must be
small compared to 1/a. These conditions result in the constraint

P2� q2� (2π/a)2 . (1.5)

In order to determine the moments of structure functions both nucleon matrix elements and
Wilson coefficients must be computed. It has turned out that it is essential to control lattice arte-
facts in the non-pertubative evaluation of the Wilson coefficients. Therefore we have to satisfy the
constraint (1.5) as strictly as possible, but in addition a subtraction of lattice artefacts based on
a perturbative calculation of the Wilson coefficients has proven indispensable. In this paper we
present first analytic results for perturbative Wilson coefficients with lattice artefacts included so
that O(a2) corrections can be computed. Our work is part of a project initiated by the QCDSF col-
laboration [5] to calculate the moments of structure functions on the lattice with the OPE method.

2. Calculation

Let us define the reduced Wilson coefficients c(q2) as

C(a,q) = c(q2)CBORN(a,q) , (2.1)

where CBORN carries the index structure. On the lattice both the non-perturbative C(a,q) and
CBORN(a,q) have corrections of O(a2). So writing

CBORN(a,q) = C(0)
BORN +(aq)2C(2)

BORN + . . . (2.2)

C(a,q) = c(0)(q2)C(0)
BORN +(aq)2 c(2)(q2)C(2)

BORN + . . . , (2.3)

and taking the ratio gives

C(a,q)

CBORN(a,q)
= c(0)(q2)+

(

c(2)(q2)− c(0)(q2)
) C(2)

BORN

C(0)
BORN

(aq)2 + . . . , (2.4)

which yields the desired O(a2) correction term.
Because the Wilson coefficients are independent of the target states we calculate the tree level

Compton scattering amplitude Wµν(a, p,q) with off-shell quark states of momentum p. The calcu-
lation is performed in momentum space using symbolic lattice Feynman rules. The local operators
Om

µ1,...,µn
in the expansion (1.4) are restricted to contain at most three covariant derivatives in agree-

ment with the intended numerical computations. We use Wilson fermions with free parameter r
leading to the following tower of local operators

• Unpolarised case: ψ̄1ψ , ψ̄γµ
↔
Dν ψ , ψ̄

↔
Dµ
↔
Dν ψ , ψ̄γµ

↔
Dν
↔
Dω
↔
Dρ ψ

• Polarised case: ψ̄γµγ5ψ , ψ̄σµν
↔
Dω ψ , ψ̄γµγ5

↔
Dν
↔
Dω ψ , ψ̄σµν

↔
Dω
↔
Dρ
↔
Dλ ψ
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with
↔
Dµ the lattice covariant left-right derivative

↔
Dµ =

→
Dµ −

←
Dµ (2.5)

and σµν = 1/2[γµ ,γν ].
The amplitude Wµν(a, p,q) is expanded in powers of sinn(ap)(n ≤ 3). Using the relation

↔
Dν∼ sin(apν) we can project out all possible operators and their respective coefficients - the corre-
sponding Born Wilson coefficients CBORN(a,q). In the final step we express all operators in terms
of operators transforming irreducibly under the hypercubic group H(4) [6].

3. Results

In this section we give the results for the OPE of Tµν associated to the amplitude Wµν

Wµν(a, p,q) = 〈p|Tµν |p〉 (3.1)

calculated between off-shell states of momentum p (for a review see e.g. [7]). Even when restricted
to operators with at most three covariant derivatives, the general result for the expansion of Tµν is
too lengthy to be presented in closed form - it has 880 terms. Except for the part without covariant
derivatives we give the results only for a special choice of the momentum transfer q - the maximally
symmetric case

q = ( f , f , f , f ), s = sin f , c = cos f . (3.2)

If not shown explicitly we set a = 1 and r = 1. The momentum transfer (3.2) is chosen to present
results in shortest form, other choices are possible just as well. Due to lack of space we will give in
this paper the first two orders in the OPE only. The complete results will be published in a future
paper [8]. All Wilson coefficients are determined up to an overall factor which depends on the
normalisation of the corresponding operators. We adopt the normalisation as given in [6].

3.1 No covariant derivative

Here we present the lowest order of the operator product expansion T
(0)

µν in the most general
form

T
(0)

µν (a,q)/e2
γ = −ar δµν ψ̄1ψ− 8ar cos(aqµ/2)2

Q2 δµν ψ̄1ψ +

∑
τ

2ar cos(aqµ/2)2 cos(aqτ)

Q2 δµν ψ̄1ψ +

8ar3 sin(aqµ/2)sin(aqν/2)

Q2 ψ̄1ψ−

∑
τ

2ar3 cos(aqτ)sin(aqµ/2)sin(aqν/2)

Q2 ψ̄1ψ +

2ar cos(aqµ/2)sin(aqν/2)sin(aqµ)

Q2 ψ̄1ψ +

2ar cos(aqν/2)sin(aqµ/2)sin(aqν)

Q2 ψ̄1ψ +

∑
τ,σ

2 ia cos(aqµ/2)cos(aqν/2)sin(aqσ )

Q2 ψ̄γτ γ5εµσντ ψ , (3.3)

4



P
o
S
(
L
A
T
2
0
0
6
)
1
1
9

Operator product expansion on the lattice: analytic Wilson coefficients H. Perlt

with

Q2 = Q2(a,q) = ∑
τ

sin(aqτ)
2 + r2

(

∑
τ

(1− cos(aqτ))

)2

. (3.4)

e2
γ denotes the quark-photon coupling.

Let us give the results for the momentum choice (3.2). For the diagonal part T (0)
µµ ( f ) (choosing

µ = 1 as an example) we find the decomposition

T
(0)

11 ( f )/e2
γ =−6(3− c)(1− c)

Q2
f

ψ̄1ψ, Q2
f = 4s2 +16(1− c)2 . (3.5)

At this level the Wilson coefficients can simply be read off (the notation τ (k)
l for the irreducible

representations is explained in [6]):

operator representation Wilson coefficient a expansion

ψ̄1ψ τ(1)
1 − 6(3−c)(1−c)

Q2
f

− 3a
2 (1− 5

12(a f )2)

Reinserting the a dependence, the expansion in powers of a is obtained by expanding the sine and
cosine functions. The off-diagonal part also contains contributions for polarised structure functions
(µ = 1,ν = 2 as an example):

T
(0)

12 ( f )/e2
γ =

2(3− c)(1− c)
Q2

f
ψ̄1ψ +

i(1+ c)s
Q2

f
(ψ̄γ3γ5ψ− ψ̄γ4γ5ψ) (3.6)

The Wilson coefficients are obtained as

operator representation Wilson coefficient a expansion

ψ̄1ψ τ(1)
1

2(3−c)(1−c)
Q2

f

a
2(1− 5

12(a f )2)

ψ̄γ3γ5ψ,−ψ̄γ4γ5ψ τ(4)
4

i(1+c)s
Q2

f

i
2 f (1− 13

12(a f )2)

3.2 One covariant derivative

In this case the local operators Oµν = ψ̄γµ
↔
Dν ψ and OT

µνω = ψ̄σµν
↔
Dω ψ contribute. For the

diagonal part T
(1)

11 ( f ) we find four independent functions bi(c,s) which build the corresponding
Wilson coefficients

b1 = 4i(1− c)(74−126c+63c2−9c3)/Q4
f

b2 = −4i(6−8c+3c2)s2/Q4
f

b3 = 4i(4−3c)s2/Q4
f

b4 = −4i(1− c)(4−9c+3c2)/Q4
f (3.7)

The following table presents the Wilson coefficients belonging to definite representations of oper-
ators building T

(1)
11 ( f ).
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operator repr. Wilson coeff. a expansion

1
2(O11 +O22 +O33 +O44) τ(1)

1
1
2(b1 +3b3)

i
2 f 2 (1+ 29

24(a f )2)

1
2(O11 +O22−O33−O44),

1√
2
(O11−O22) τ(3)

1
1
2(b1−b4)

15ia2

16 (1− 4
3(a f )2)

1√
2
(O12 +O21),

1√
2
(O13 +O31),

1√
2
(O14 +O41) τ(6)

3
1√
2
(b2 +b3)

ia2

8
√

2
(1− 4

3(a f )2)

1√
2
(O23 +O32),

1√
2
(O24 +O42),

1√
2
(O34 +O43) τ(6)

3

√
2b3

i
2
√

2 f 2 (1− 1
6(a f )2)

1√
2
(O12−O21),

1√
2
(O13−O31),

1√
2
(O14−O41) τ(6)

1
1
2(b2−b3) − i

4 f 2 (1− 5
12(a f )2)

For the off-diagonal part T
(1)

12 ( f ) we have 12 combinations bi(c,s)

b1 = −4i(1− c)(33−52c+24c2−3c3)/Q4
f

b2 = 4i(7−9c+3c2)s2/Q4
f

b3 = −4i(3−2c)s2/Q4
f

b4 = 6i(1− c)2(1+ c)(2− c)/Q4
f

b5 = 2i(1− c)2(4−9c+3c2)/Q4
f

b6 = 2i(1− c)2(1+ c)(4−3c)/Q4
f

b7 = −4(1− c)(19−18c+3c2)s/Q4
f

b8 = 2(1− c)(14−15c+3c2)s/Q4
f

b9 = 12(2− c)s3/Q4
f

b10 = −4s3/Q4
f

b11 = −2(1− c)(4−9c+3c2)s/Q4
f

b12 = −2(4−3c)s3/Q4
f (3.8)

The corresponding Wilson coefficients are shown in the last table.

4. Summary

In this paper we have presented first results for perturbative Wilson coefficients in lattice QCD
needed to compute moments of structure functions. We have used Wilson fermions to calculate
the off-shell Compton scattering amplitude. The expansion in the lattice spacing a up to O(a2) can
be used to determine the lattice artefacts in the numerical determination of the Wilson coefficients.
As can be seen from the tables there are Wilson coefficients which are at least of O(a). They are
associated to the operators ψ̄1ψ and ψ̄σµν

↔
Dω ψ which do not occur in the continuum OPE for

Tµν .

Acknowledgements. This work is supported by DFG under contract number FOR 465 (Forscher-
gruppe Gitter-Hadronen-Phänomenologie) and by the EU Integrated Infrastructure Initiative Hadron
Physics under contract number RII3-CT-2004-506078.
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operator repr. Wilson coeff. a expansion

1
2(O11 +O22 +O33 +O44) τ(1)

1 b1 +b5 − i
4 f 2 (1+ 25

12(a f )2)

1
2(O11 +O22−O33−O44) τ(3)

1 b1−b5 − i
4 f 2 (1+ 19

12(a f )2)
1√
2
(O12 +O21) τ(6)

3

√
2b2

i
2
√

2 f 2 (1− 1
6(a f )2)

1√
2
(O13 +O31),

1√
2
(O14 +O41) τ(6)

3
1√
2
(b3 +b4)

i
4
√

2 f 2 (1+ 1
12(a f )2)

1√
2
(O23 +O32),

1√
2
(O24 +O42) τ(6)

3
1√
2
(b3 +b4)

i
4
√

2 f 2 (1+ 1
12(a f )2)

1√
2
(O34 +O43) τ(6)

3

√
2b6

ia2

8
√

2
(1− 4

3(a f )2)

1√
2
(O13−O31),

1√
2
(O14−O41) τ(6)

1
1√
2
(b3−b4)

i
4
√

2 f 2 (1− 17
12(a f )2)

1√
2
(O23−O32),

1√
2
(O24−O42) τ(6)

1
1√
2
(b3−b4)

i
4
√

2 f 2 (1− 17
12(a f )2)

√

2
3(OT

1{23}+OT
2{13}),

√

2
3(OT

1{24}+OT
2{14}) τ(8)

2

√

2
3(2b10 +b9)

a
2
√

6 f
(1− 4

3(a f )2)
√

2
3(OT

1{34}+OT
3{14}),−

√

2
3(OT

2{34}+OT
3{24}) τ(8)

2

√
6b12 −

√
3a

4
√

2 f
(1− 4

3(a f )2)
√

2OT
2{13},

√
2OT

2{14} τ(8)
2 −

√
6b9 − 3

√
3a

2
√

2 f
(1− 4

3(a f )2)
√

2OT
3{14},−

√
2OT

3{24} τ(8)
2 −

√
2b12

a
4
√

2 f
(1− 4

3(a f )2)

1√
2
(OT

122−OT
133),− 1√

6
(OT

122 +OT
133−2OT

144) τ(8)
1

√
2(b11 +b7) − 3a

4
√

2 f
(1− 4

3(a f )2)

1√
2
(OT

211−OT
233),

1√
2
(OT

211 +OT
233−2OT

244) τ(8)
1

√
2b11

a
4
√

2 f
(1− 4

3(a f )2)

1
6 ∑p∈(1,2,3) sgn(p)OT

123,
1
6 ∑p∈(1,2,4) sgn(p)OT

124 τ(4)
4

√

2
3(b9−b10)

√

2
3

a
f (1− 4

3(a f )2)

1√
3
(OT

122 +OT
133 +OT

144) τ(4)
1

4√
3
(4b11−2b7)

2
√

3a
f (1− 4

3(a f )2)

1√
3
(OT

211 +OT
233 +OT

244) τ(4)
1 − 4√

3
b11 − a

2
√

3 f
(1− 4

3(a f )2)
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