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Meson distribution amplitudes W. Schroers

1. Introduction

Hadronic wave functions are of crucial importance when describing exclusive and semi-ex-
clusive reactions [1]. For detailed references and applications consult [2]. Distribution amplitudes
(DAs) are related to the hadron’s Bethe-Salpeter wave function, φ

�
x � k ��� , by an integral over trans-

verse momenta. For the leading twist meson-DAs we have

φ
�
x � µ2 ��� Z2

�
µ2 ���
	

k � 	 � µ
d2k φ

�
x � k ���� (1.1)

where x is the quark longitudinal momentum fraction, Z2 the renormalization factor (in the light-
cone gauge) for the quark-field operators in the wave-function, and µ denotes the renormalization
scale. In this presentation we quote all numbers with a scale µ 2 � 4 GeV2 in the MS-scheme.

It is convenient to rescale ξ � 2x � 1. In the following we use φ
�
ξ � to describe any pseu-

doscalar meson, φπ
�
ξ � to refer to the pion, and φK

�
ξ � to denote the kaon. Furthermore, it is

common to expand DAs into their Gegenbauer moments and quote the expansion coefficients, a i,
at a given renormalization scale as a parameterization of DAs,

φ
�
ξ � µ2 ��� 3

4

�
1 � ξ 2 ��� 1 � ∞

∑
n � 1

an
�
µ2 � C3 � 2

n
�
ξ ����� (1.2)

The zeroth moment is normalized to unity, � 1� 1 dξ φ
�
ξ � µ2 ��� 1, at any energy scale µ2. From

renormalization group arguments we find that

φ
�
ξ � µ2 � ∞ ��� φas

�
ξ ��� 3

4

�
1 � ξ 2 ���

Taking the u- and d-quarks to be degenerate, G-parity implies that the pion DA is an even function
of ξ and hence all odd moments vanish, i.e., aπ

2n � 1 � 0.
Recently, we have computed the first moments of meson distribution amplitudes [2] on the

lattice. Independently, a calculation of the first moment of the kaon distribution amplitude has
appeared which uses a different discretization scheme and different working points [3]. In this
contribution we present our calculation of the first non-vanishing moment of the pion DA, aπ

2 , and
the first two moments of the kaon DA, aK

1 and aK
2 . We compare our results to previous estimates

from sum rules and experiment and discuss the implications of our lattice computation.

2. Lattice calculation

On the lattice, one has to perform the light-cone operator product expansion to find a relation
between local operators and moments of DAs w.r.t. ξ . To be specific, one has�

ξ n  � µ2 �!� � 1� 1
dξ ξ n φ

�
ξ � µ2 ����

Ω "$#�% ν0 & & & νn ' � 0 �(" PS  � i fPS p % ν0 �)�)� pνn ' � ξ n  � (2.1)# ν0 & & & νn

�
0 �*� in q̄

�
0 � γν0γ5 +Dν1 ,),), +Dνn u

�
0 ���

where “PS” refers to either the pion or the kaon, and q can be either a d- or an s-quark. +D is the
covariant derivative and -.�)�)�0/ denotes the symmetrization of indices and the subtraction of traces.
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The matrix element, Eq. (2.1), can be obtained from an appropriate ratio of two-point func-
tions, consult [2] for details. For the first moment of pseudoscalar mesons containing non-degene-
rate mass quarks we use the following two operators# a

41 � # % 41 ' � # b
44 � #�% 44 ' � 1

3

� # % 11 ' � #�% 22 ' � #�% 33 '�� � (2.2)

For # a
41 we have used the external momentum �p � �

2π � L � 0 � 0 � — with L being the spatial lattice
size — and the corresponding rotated momenta, for # b

44 we have taken �p � �0. For the second
moment we have only employed # 412 � # % 412 ' with external momentum �p � �

2π � L � 2π � L � 0 � .
We have generated our gauge field configurations using the Wilson gauge action and two

flavors of dynamical, non-perturbatively improved clover fermions. For four different values of
β � 5 � 20 � 5 � 25 � 5 � 29, and 5 � 40 and up to four different κ values per β we have produced # � 2000 �
8000 � trajectories. Lattice spacings and spatial volumes vary between 0 � 075 � 0 � 123 fm and

�
1 � 5 �

2 � 2fm � 3, respectively. The scale has been set using a Sommer parameter of r0 � 0 � 467 fm. For
further details see [4]. Correlation functions are calculated every 10 HMC trajectories using four
different locations of the fermion source. By applying binning we obtain an effective distance of
20 trajectories. We observe that the bin size has little effect on the error, indicating that residual
autocorrelations are small.

The matching between the lattice results and the MS-scheme has been done non-perturbatively.
The renormalization procedure has been detailed in Refs. [5, 6] and will be discussed further in a
forthcoming publication.

3. Numerical results

3.1 Mass-degenerate quarks

For mass-degenerate quarks, i.e., the pion, we compute
�
ξ 2  

π
�
µ2 � 4GeV2 � , and from this

aπ
2

�
4GeV2 � . To obtain the result at the physical pion mass we first perform a linear chiral extrapo-

lation of
�
ξ 2  to the physical pion mass at each fixed value of β . Figure 1 shows

�
ξ 2  obtained from# 412 as a function of the pion mass at a fixed value of β � 5 � 29 with κsea � κval. The dependence on

the pion mass turns out to be very weak. Using chiral perturbation theory in the continuum it has
been shown [7] that for small pion masses the leading logarithmic contribution can be absorbed
in the pseudoscalar decay constant, fπ . Hence, for small values of the pion mass we expect the
dependence on mπ to be rather flat. However, a precise matching of lattice results and chiral per-
turbation theory similar to what has been done in [8] for the nucleon axial coupling, gA, is still to
be performed.

Figure 2 shows the continuum extrapolation of the results from all values of β at the physical
pion mass for # 412. Scaling violations seem to be small, introducing an uncertainty of roughly 6%.
The continuum result reads�

ξ 2  
π
�
µ2 � 4GeV2 ��� 0 � 269

�
39 ��� aπ

2
�
4GeV2 ��� 0 � 201

�
114 ��� (3.1)

It is in agreement with the older quenched result
�
ξ 2  

π
�
4GeV2 � � 0 � 286

�
49 � � 0 & 030� 0 & 013 from [9]. It

is larger than the asymptotic value,
�
ξ 2  

π
�
µ2 � ∞ �� 0 � 2, indicating that the commonly adopted

asymptotic ansatz at this energy scale may not be justified quantitatively.
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Figure 1: Pion mass dependence of the second moment of the pion distribution amplitude, � ξ 2 �
π , at β �

5 � 29, for all four values of κsea � κval from � 412.

The coefficient aπ
2 has been under experimental scrutiny recently. The decay of neutral pions

into two photons contains information on the pion wavefunction. However, as has been reported in
[10] the leading twist expression is insufficient to determine aπ

2 unambiguously. QCD sum rules,
e.g. [11, 12, 13] have found that a2 is indeed positive and the more recent calculations in this
approach [12, 13] are compatible with our result also in magnitude. However, the contribution of
aπ

4 is expected to be non-negligible in modeling the pion DA. This makes an independent lattice
analysis of this quantity particularly interesting.

3.2 Mass non-degenerate quarks

In case of two quarks with distinct masses, the odd moments will no longer vanish. Since we
are primarily interested in the light pseudoscalar mesons we tune the parameters and extrapolations
in such a manner that the light quark (corresponding to κsea) has the correct mass to reproduce a
pion if the quarks were degenerate and the heavy quark (corresponding to κval) then reproduces the
kaon mass. Since we require a large set of different valence masses, we have restricted ourselves
to the four data sets at β � 5 � 29 only. These have κsea � 0 � 1340 � 0 � 1350 � 0 � 1355 � and 0 � 1359. The
systematic error due to the continuum extrapolation is estimated from the extrapolation in Fig. 2 to
be about 6%.

A sample plot for the second moment of the kaon distribution amplitude can be seen in Fig. 3
for the working point β � 5 � 29, κsea � 0 � 1359. Several different values have been chosen for the
heavy quark mass. The vertical line indicates the physical kaon mass and the data point at this
location has been taken from a linear extrapolation.

The data from all four samples of gauge fields at β � 5 � 29 has been combined and linearly
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Figure 2: Continuum extrapolation of � ξ 2 �
π for all values of β for � 412.

extrapolated to the physical values of mK and mπ in a global fit, see [2] for details. The resulting
value is �

ξ 2  
K
�
4GeV2 ��� 0 � 260

�
6 � � 16 ��� aK

2
�
4GeV2 ��� 0 � 175

�
18 � � 47 ��� (3.2)

The first error is of statistical origin while the second one corresponds to a scaling error of 6%. The
result (3.2) corresponds to a ratio of

�
ξ 2  

K � � ξ 2  
π � 1. In the literature, there has been the debate

between [11] predicting a ratio of aK
2 � aπ

2
� 0 � 59

�
0 � 04 and [12, 14] predicting a ratio of about � 1.

Our finding clearly favors the latter results.

Of particular interest is the first moment of the kaon DA,
�
ξ  K , and, hence, also aK

1 . Figure 4
shows the interpolation of

�
ξ  obtained from # b

44 as a function of the mass difference m2
K � m2

π for
one sample of gauge fields. Note that this is one of the few cases where an interpolation suffices. We
now have a result at a specific pion mass determined by κsea � κlight. After repeating this procedure
on our other data-sets with β � 5 � 29, we extrapolated the results linearly in the sea quark mass to
the physical pion mass. Combining this result with the value obtained from a similar analysis using# a

41, we finally find�
ξ  K � 4GeV2 ��� 0 � 0275

�
5 � � 17 ��� aK

1
�
4GeV2 ��� 0 � 0453

�
9 � � 29 ��� (3.3)

Again, the first error is statistical and the second systematic. The magnitude of this quantity has
been debated in the literature quite recently, see the discussion in [12]. The value we find is more
accurate than the sum rule estimate aK

1 � 0 � 05
�
25 � , but fully compatible both in sign and in mag-

nitude. The independent investigation in [3] finds a value of aK
1

�
4GeV2 � � 0 � 053

�
5 � which is also

compatible with our finding.
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Figure 3: Extrapolation of the second moment of the kaon distribution amplitude, � ξ 2 �
K at µ2 � 4GeV2, at

β � 5 � 29, κsea � κlight � 0 � 1359 and several values of κval � κheavy. The extrapolation to the physical value is
shown at the vertical line. The blue data point indicates the degenerate mass case, κheavy � κlight.

4. Summary

We have performed a calculation of the first two moments of the distribution amplitudes of
pseudoscalar mesons. In the case of the pion we have found agreement with previous sum rule
calculations and phenomenological evaluations from experimental data. In the case of the kaon
we have also found agreement with previous sum rule estimates, but with smaller statistical errors.
The uncertainty due to the continuum extrapolation has been estimated and found to be small.

Acknowledgments

The numerical calculations have been done on the Hitachi SR8000 at LRZ (Munich), on
the Cray T3E at EPCC (Edinburgh) under PPARC grant PPA/G/S/1998/00777 [15] and on the
APEmille and APEnext at NIC/DESY (Zeuthen). This work was supported in part by the DFG
under contract FOR 465 (Forschergruppe Gitter-Hadronen-Phänomenologie) and in part by the EU
Integrated Infrastructure Initiative Hadron Physics (I3HP) under contract number RII3-CT-2004-
506078. W.S. thanks the Physics Department of the National Taiwan University for their hospitality
and Jiunn-Wei Chen for valuable remarks and discussions.

References

[1] S. J. Brodsky and G. P. Lepage, Adv. Ser. Direct. High Energy Phys. 5 (1989) 93.

[2] V. M. Braun et al., arXiv:hep-lat/0606012.

6



P
o
S
(
L
A
T
2
0
0
6
)
1
2
2

Meson distribution amplitudes W. Schroers

0 0.1 0.2 0.3 0.4 0.5
m

K

2
 - mπ

2
 / GeV

2

0.01

0.02

0.03

0.04

0.05
<

ξ>

Figure 4: Interpolation of the first moment of the kaon DA, � ξ �
K at β � 5 � 29, κsea � 0 � 1359 as obtained

from � b
44. The physical point corresponding is indicated by the vertical line, the value obtained by a linear

interpolation.

[3] P. A. Boyle, M. A. Donnellan, J. M. Flynn, A. Jüttner, J. Noaki, C. T. Sachrajda and R. J. Tweedie
[UKQCD Collaboration], arXiv:hep-lat/0607018; A. Jüttner et al., these proceedings,
arXiv:hep-lat/0610025; A. Jüttner et al., in preparation.

[4] M. Göckeler, R. Horsley, A. C. Irving, D. Pleiter, P. E. L. Rakow, G. Schierholz and H. Stüben, Phys.
Rev. D 73, 014513 (2006).

[5] M. Göckeler, R. Horsley, H. Perlt, P. E. L. Rakow, A. Schäfer, G. Schierholz and A. Schiller,
arXiv:hep-lat/0605002.

[6] M. Göckeler, R. Horsley, D. Pleiter, P. E. L. Rakow and G. Schierholz [QCDSF Collaboration], Phys.
Rev. D 71, 114511 (2005).

[7] J. W. Chen and I. W. Stewart, Phys. Rev. Lett. 92, 202001 (2004).

[8] R. G. Edwards et al. [LHPC Collaboration], Phys. Rev. Lett. 96 (2006) 052001; A. Ali Khan et al.,
arXiv:hep-lat/0603028.

[9] L. Del Debbio, M. Di Pierro and A. Dougall, Nucl. Phys. Proc. Suppl. 119, 416 (2003).

[10] M. Diehl, P. Kroll and C. Vogt, Eur. Phys. J. C 22, 439 (2001).

[11] V. L. Chernyak and A. R. Zhitnitsky, Phys. Rept. 112 (1984) 173.

[12] P. Ball, V. M. Braun and A. Lenz, JHEP 0605, 004 (2006).

[13] A. P. Bakulev, S. V. Mikhailov and N. G. Stefanis, Phys. Lett. B 578, 91 (2004); A. P. Bakulev,
S. V. Mikhailov and N. G. Stefanis, Phys. Rev. D 67, 074012 (2003).

[14] A. Khodjamirian, T. Mannel and M. Melcher, Phys. Rev. D 70, 094002 (2004).

[15] C. R. Allton et al. [UKQCD Collaboration], Phys. Rev. D 65, 054502 (2002).

7


