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Figure 1: Sketch of the T—u phase diagram in QCD with two colours. We have studied the transition
crossed by the dashed arrow at finite temperature as the density is varied.

1. Introduction

In Fig. 1 the phase space of QCD in the temperature and quark chemical potential u plane
is shown schematically. Most of the features displayed in the Figure are theoretical predictions
with marginal experimental verification. We have studied the transition as the chemical potential is
varied (dashed arrow in Fig. 1) at a fixed temperature T that is most likely above the region where
a diquark condenses (see later).

We wanted to understand the fate of the topological susceptibility x across the transition and to
decide whether its possible change occurs at the same value of (t where the vector chiral symmetry
is restored and the Polyakov loop signal rises [1].

It is known that at the finite temperature transition the signal of x drops abruptly for gauge
theories with two or three colours and several values of the flavour number [2, 3, 4]. The present
is the first work where a similar study is performed at the finite density transition (the full account
can be found in Ref. [5]).

We have performed the study on the lattice by simulating the theory with two colours in order
to avoid the sign problem that in the three colour theory makes the importance sampling method
impracticable (for methods to overcome this problem see [6] and references therein). We expect
that this modification of true QCD has little impact on the results concerning gluon properties and
in particular instanton physics. The main differences between two and three colour QCD regard
aspects of the theory that we have not studied, like the hadron spectrum and the diquark condensed
phase [7, 8].
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2. Simulation and observables

We have simulated the model on a 142 x 6 lattice at an inverse bare lattice gauge coupling
B =4/g? = 1.5 and quark mass am= 0.07 in units of lattice spacing a. The Wilson action was used
for gauge fields and the staggered formulation for quarks. We introduced 8 flavours of staggered
quarks.

The Hybrid Molecular Dynamics algorithm was chosen to update configurations. They were
separated typically by 50-100 steps of the algorithm in order to well decorrelate the topology [9,
10, 11]. The behaviour of several observables was followed across the transition shown in Fig. 1:
chiral condensate (@), Polyakov loop or Wilson line P, topological susceptibility x, baryonic
density pg and average plaquette Tr(J/2.

The measurement of the topological susceptibility requires a careful treatment of composite
operators. This quantity is defined as

x= [dx(T{QXQOY). @)

where Q(X) is the topological charge density operator that appears in the r.h.s. of the axial singlet
anomaly. x is related to the n’ mass through the Witten—\eneziano mechanism [12, 13] and to the
chiral condensate in the massless limit [14].
Eq.(2.1) can be rewritten in a more compact form,
(@)

X= VAR (2.2)

where the total topological charge Q is defined as Q = [ d*xQ(x) and V is the spacetime volume.
This expression has only a formal meaning because it must be supplemented with a multiplicative
renormalization for each power of the topological charge operator Q [15, 16] as well as a careful
treatment of the contact divergences that appear when the two operators are evaluated at the same
spacetime point [17].
A detailed description of the procedure that we have followed to extract x can be found in [5].
In a nutshell, one has to define a lattice regularization Q (x) of the topological charge density
operator. The corresponding total lattice topological charge is Q. = 5« Q. (x) and the lattice topo-
logical susceptibility is x. = (Q?)/V. This quantity is related to the physical susceptibility x by
the general expression [15, 16, 17]
XL =2Z%a'x+M, (2.3)

where Z is a multiplicative renormalization of Q, a is the lattice spacing and M is an additive
renormalization constant derived from the contact terms in Eq.(2.2). In presence of composite
operators the usual renormalization program in a renormalizable theory is not enough to fully
renormalize a Green’s function. This is the origin of Z (even in the case of the pure gauge theory
where the topological charge operator has no anomalous dimensions). On the other hand part of
the contact divergences that appear in the product of the two topological charge operators must be
subtracted. This subtraction is defined as M = X |g—0, i.e. M is the value of x_ in the sector of
zero topological charge. This condition guarantees the obvious requirement that x vanishes in that
sector.
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Figure 2: The ratio x(u)/x(u = 0) as a function of au showing the abrupt drop of the signal of the
topological susceptibility at a (pseudo-) critical value of the chemical potential. In the inset the results for
XL are displayed within a wide window of values of u.

We have obtained the topological susceptibility from Eq.(2.3) by using the “Pisa method”
where the renormalization constants Z and M are explicitely calculated and then inserted in Eq.(2.3)
in order to extract x. Since we shall present the results in the form of the ratio x(u)/x (¢ = 0) as
a function of u and since Z is independent of infrared properties, hence of u, only the calculation
of M is required. This additive renormalization constant has been computed by using the non—
perturbative method introduced in Refs. [18, 19, 3]. It is enough to calculate it for one single value
of the chemical potential because M is independent of u as well.

3. Resaults

In Fig. 2 we show the resulting behaviour of the topological susceptibility as a function of the
chemical potential. A clear cut drop is seen at the position apc = 0.175(5). This sudden fall is an
indication of the effective restoration of the axial singlet symmetry [20].

We do not show the analogous figures for the Polyakov loop and the chiral condensate be-
haviours (see Ref. [5]). Instead in Fig. 3 the derivatives of the three quantities (topological suscep-
tibility, Polyakov loop and chiral condensate) are superimposed to give evidence of the coincidence
of the three transitions: they all happen at the same (pseudo—)critical value api; = 0.175(5). Single
points are the result of the discrete derivatives computed from the measured data while the lines
are the derivatives of the interpolations made with a natural cubic spline [21] on each data set. The
continuous line, corresponding to (dx (u)/du)/x(0), develops several maxima and minima. They
are spurious effects on the spline interpolation that stem from the upward fluctuation of the latest
point before the transition in Fig. 2. Since the theory deconfines at the same u where (@) van-
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Figure 3: Derivatives with respect to the chemical potential u of the normalized topological susceptibility
(circles, continuous line and left vertical axis), Polyakov loop (up triangles, dotted line and right vertical
axis) and chiral condensate (down triangles, dashed line and right vertical axis). The two vertical axes are
expressed in units of the lattice spacing a. The three sets of data have been slightly shifted horizontally to
avoid the overlapping of various symbols and error bars. Lines are the result of a spline interpolation.

ishes, the path in the T—u diagram followed in our study likely lies above the superfluid phase (as
indicated in Fig. 1) [22].

In order to give an estimate of the main results in physical units, we have done a second
simulation of the model at zero chemical potential by varying the inverse bare lattice coupling
B on the same lattice volume and have measured the Polyakov loop and the chiral condensate.
The data clearly reflected the existence of a critical 8. = 1.594(6). It was then assumed that the
corresponding transition temperature T lies in the range 100-200 MeV (this assumption was based
on the following two facts: (i) the more fermions we include, the lower T, becomes and (ii) on the
contrary T increases with the mass of quarks which turn out to be rather heavy in our simulation).
Hence a value for the lattice spacing at 3. was obtained. This value was then run, by making use
of the two—loop beta function, from S to our working 8 = 1.5 thus obtaining the lattice spacing
a(B = 1.5) = 0.64(4)(33) fm. The errors are derived from the imprecision on S and from the
inaccuracy of the number assumed for T, respectively. We have not included an estimate of the
error that stems from the use of the two—loop beta function to run a from . to g = 1.5.

This result allowed us to assign physical units to the various parameters of our simulation:
He = 54(2)(4)(18) MeV (errors are respectively due to the estimate of ap, the imprecision on 3¢
and the rough approximation of Tc) and T =51(4)(17) MeV (error on [ and on T respectively).

Notice that the numerical value of L is roughly compatible with half of the mass of the lightest
baryon (which in the theory with two colours is made of two quarks and degenerated with the
pion). However we take the above numbers with caution because of the large systematic errors
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Figure 4: Baryon density per space site and average plaquette as a function of au. The down triangle is the
result of a separate simulation for the pure gauge theory.

derived from the small and coarse lattice volume, the (wrong) gauge group and the inexact updating
algorithm.

4. Pauli blocking

By repeating the simulation at very high values of the chemical potential, in principle one
could test the perturbative region of the phase diagram. However the advent of the so—called Pauli
blocking makes it not viable. As u increases, more and more fermions are placed in the lattice
volume. Since it contains a countable number of sites, the Pauli principle imposes a maximum
allowed number of fermions that can be placed on them. In our case the maximum allowed density
is one baryon per site [23]. This maximum is attained for aps = 1.2. After that point, fermions are
frozen and the theory becomes entirely quenched. We have verified this statement by calculating
the baryon density and the average plaquette. Their data are shown in Fig. 4. pg becomes 1 and
stays constant for all p > us. Also the average plaquette stays constant after g and this constant
coincides with the value obtained from a separate Monte Carlo study where the pure gauge theory
was simulated (represented by the down triangle in Fig. 4). The inset of Fig. 2 contains the data
for x. which for u > s reach a second plateau that coincides with the value obtained from an
independent simulation using the pure gauge model (down triangle). We stress that Pauli blocking
is a lattice effect with no counterpart in the continuum.

5. Conclusions

We have studied QCD with two colours and 8 flavours of staggered quarks on the lattice at
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finite temperature and chemical potential. We followed the behaviour of several observables across
the transition run into by the dashed arrow depicted in Fig. 1. At the temperature T which lies above
the superfluid phase, the topological susceptibility x, the Polyakov loop and the chiral condensate
undergo their transitions at the same value of . Such a coincidence of transitions is the main result
of our work. This value of u is compatible with a critical chemical potential at zero temperature
that equals half of the pion mass. This is the expected correct result, which however we take with
caution because of the large quark mass used in the action. Rather this coincidence is likely due
to a fortunate compensation of several systematic errors (approximate simulation algorithm, large
number of quarks, wrong gauge group, estimate of a(f3 = 1.5), etc.).
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