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1. Introduction

Chiral symmetry plays an important role in determining the low energy physics of QCD. It
is also expected to play a vital role in determining the behavior of the chiral phase transition that
occurs at finite temperatures. Renormalization group arguments based on ε-expansion techniques
show that the number of light quark flavors and the strength of the anomaly in QCD can play
a significant role in determining the order of the transition [1, 2]. While a second order phase
transition is possible for two massless quarks, the presence of more light quarks can introduce
fluctuations that will force the transition to become first order. If the strength of the anomaly
is sufficiently weak at the transition, the two-flavor transition could turn into a first order one.
Although ε-expansion techniques are not completely justifiable for the problem at hand, there are
many examples in which they are known to work sufficiently well. On the other hand there are also
examples where these techniques fail.

The effect of the number of light fermion flavors on the chiral phase transition has been a
subject of extensive research in the past two decades [3, 4, 5, 6, 7]. For recent reviews see [8, 9, 10].
Unfortunately, the effect of the anomaly on the chiral phase transition has not been studied to a
similar extent in QCD. Of course it is not possible to tune the anomaly easily in QCD. The subject
has been analyzed in the context of mean field theory [11, 12] and the results are in agreement with
the ε-expansion as expected. Thus, if the strength of anomaly at the phase transition was small
enough it could be another reason to expect a first order transition in QCD. Lattice simulations
have shown that the strength of the anomaly may indeed be small at the chiral phase transition
[13, 14].

Recently, a new analysis based on a re-summation technique has emerged, which seems to
show that the results of the ε-expansion in two-flavor QCD in the absence of the anomaly may
not be correct [15]. While the ε-expansion forbids a second order transition, the new analysis
allows it. It would be interesting to find the predicted second order phase transition and its critical
behavior through Monte Carlo methods. Since two-flavor QCD in the absence of the anomaly has
an SU(2)× SU(2)×U(1) symmetry, the new analysis implies that there is a second order finite
temperature critical behavior in the appropriate O(4)×O(2) sigma model. As far as we know, there
are no Monte-Carlo studies in the sigma model context which try to address this question from first
principles.

In this work we use strongly coupled two flavor lattice QED with massless staggered fermions
to model the physics of the two-flavor QCD chiral phase transition. Although our model is not
QCD it has the right chiral symmetries of two-flavor massless QCD and can be studied efficiently
with cluster algorithms. Our model may be viewed as an alternative to the usual sigma model
approach where symmetries play an important role. Just like in the sigma model we can add a four
fermion term to our action which mimics the physics of the anomaly. This allows us to study the
phase diagram as a function of the temperature and the strength of the anomaly. The similarity
with the sigma model is only true in an indirect sense. More directly, our model is much closer to
QCD in spirit since the model is constructed with quark degrees of freedom. Of course the quarks
are confined into pions and we can rewrite our model as a statistical mechanics of pion world lines.
Thus, our model offers a new method to explain the qualitative features of pion physics of QCD in
a simple setting.
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Figure 1: An illustration of a DPI configuration in 1+1 dimensions.

2. Model

The action of strongly coupled lattice QED that we study is given by

S = −∑
x,α

{

ηα,x

[

eiφx,α Ψx+αΨx − e−iφx,α ΨxΨx+α

]

}

−
C
2 ∑

x
(ΨxΨx)

2 (2.1)

where x is a lattice site on a four dimensional hyper-cubic lattice with dimensions Lt ×L3. The two
component Grassmann fields Ψx and Ψx describe the two flavors of quarks and φα,x represents the
U(1) gauge field associated to the bond connecting the sites x and x+α (α = 0,1,2,3 represents the
temporal and spatial directions respectively. Further, ηα,x are phase factors satisfying the relations
(ηt,x)

2 = T and (ηi,x)
2 = 1 for i = 1,2,3. We will call the parameter T as the temperature. Thus,

we have two tunable parameters T and C in our model.

It is possible to integrate out the gauge fields completely and rewrite the partition function
as a statistical mechanics of Dimer-Pion-loop-Instanton (DPI) configurations. Each configuration
is made up of four types of objects: u-dimers πu

x,α = 0,1, d-dimers πd
x,α = 0,1, oriented pion-

dimers π1
x,α = 0,1,−1, and instantons Ix = 0,2. A dimer is an object connecting neighboring sites

and is associated with the corresponding bond (x,α). There are constraints in the configurations
that follow from the fermionic nature of the microscopic action. These can be mathematically
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represented as follows:

Ix +∑
α

[πu
x,α +πd

x,α + |π1
x,α |+πu

x−α,α +πd
x−α,α + |π1

x−α,α |] = 0 (2.2a)

∑
α

[πu
x,α −πd

x,α +πu
x−α,α −πd

x−α,α ] = 0 (2.2b)

∑
α

[π1
x,α +π1

x−α,α ] = 0 (2.2c)

The Boltzmann weight of each DPI configuration turns out to be T nt InI where nt is the total number
of temporal dimers (including all the three dimers) and nI is the total number of instantons. An
illustration of a DPI configuration is shown in figure 1

It is easy to verify that when C = 0 the action is invariant under a U(2)×U(2) chiral symmetry:

Ψxe → LΨxe , Ψxo → RΨxo , Ψxe → ΨxeR
†, Ψxo → ΨxoL† (2.3)

where L,R ∈ U(2) and xe and xo refers to even and odd lattice sites. Since the baryon number is
gauged, in the strong coupling limit the baryon number is confined. Thus, the relevant symmetry is
SU(2)×SU(2)×UA(1) just like the two flavor QCD. When C 6= 0, the UA(1) symmetry is broken,
which suggests that it induces the effects of the anomaly. For this reason we call the objects that
arise due to C in DPI configurations, as instantons. Our motivation in this work is to study the
T −C phase diagram of our model. At low temperature we expect the chiral symmetry to be
spontaneously broken, while at high temperatures the symmetry is restored. Our intent is to study
the chiral phase transition as a function of T . We fix Lt = 4 in this work.

3. Observables

In the low temperature phase we expect SU(2)× SU(2)×UA(1) symmetry to be broken to
SU(2) symmetry. In other words O(4)×O(2) symmetry is broken to O(3). In order to study the
nature of the chiral phase transition we focus on the winding number susceptibilities defined using
one of the O(4) currents and the O(2) currents.

YV =
1
L3

3

∑
α=1

〈

(

∑
x

π1
x,α

)2
〉

(3.1a)

YA =
1
L3

3

∑
α=1

〈

(

∑
x

πu
x,α +πd

x,α + |π1
x,α |

)2
〉

(3.1b)

We will define F2
π = limL→∞ χV and F2

η = limL→∞YA. Both F2
π and F2

η are the squares of the effective
three dimensional non-singlet and singlet pion decay constants and should be non-zero when the
corresponding symmetries are broken. On the other hand in the high temperature phase when the
symmetries are restored we expect the decay constants to vanish. If the chiral phase transition is
second order we expect

LY = f (tL1/ν) (3.2)

where f (x) is a universal function analytic at x = 0 and ν is a critical exponent, where t = T −Tc/Tc

is the reduced temperature.

4



P
o
S
(
L
A
T
2
0
0
6
)
1
2
8

Effects of the anomaly on the QCD chiral phase transition Shailesh Chandrasekharan

2.44 2.45 2.46 2.47
T

0

5

10

L YA

L=16
L=24
L=32
L=48

2.43 2.44 2.45 2.46 2.47 2.48
T

0

1

2

3

4

5

L YV

L=16
L=24
L=32
L=48

Figure 2: Plot of LYA(left) and LYV (right) as a function of T for different lattice sizes at C = 0. The existence
of a second order transition can be confirmed if all the curves intersect at a single value of T .
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Figure 3: Plot of F2
π and F2

η as a function of T . The data fits well to a power law except very close to Tc.
The inset shows a two state signal in YV (as a function of simulation time) at T = 2.4675 and L = 48.

4. Results

When C = 0 the anomaly is absent. As discussed in the introduction, early studies based on
the ε-expansion had indicated that the transition must be first order [1]. On the other hand recent
studies have suggested the possibility of a second order transition with new critical exponents
[15]. So what does our model show? We have studied this question at Lt = 4 for lattice sizes
L = 24,32,48,64 and at different temperatures. In figure 2 we plot LYA (left plot) and LYV (right
plot) as a function of T for various different values of L. The existence of a second order transition
can be confirmed if all the curves intersect at a critical temperature Tc as predicted by eq.(3.2).
Clearly, since the curves do not intersect at a point we conclude that in our model the transition is
first order. Our data suggests that Tc ∼ 2.467(2).

We have also computed F2
π and F2

η from the large L extrapolations of YV and YA and these
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Figure 4: Plot of LYV as a function of T for different lattice sizes at C = 0.3. The existence of a second
order transition is clearly seen since all the curves intersect at Tc = 2.83575(5). The inset shows LYV versus
(T −Tc)L1/ν with ν = 0.745 expected for a 3d O(4) model.

results are plotted in figure 3 as a function of T . Away from the critical point both F 2
π and F2

η
fit well to a power-law of the form A(Tc − T )ν . However, the fit gives Tc = 2.4693(3) which is
too high, confirming again that the transition is indeed first order. In the inset of figure 3 we plot
evidence for a two state signal at T = 2.4675, a value which is close to the critical temperature.

Next we switch on the anomaly and study our model at C = 0.3. In this case the symmetry of
our model reduces to SU(2)× SU(2) which is broken to the diagonal SU(2) at low temperatures.
Now the finite temperature phase transition can indeed be second order in the universality class of
the three dimensional O(4) spin model. This universality class was studied recently in [16] and it
was found that ν = 0.745(2). In figure 4 we plot YV L as a function of T for values of L exactly like
figure 2. However, now the curves for different L’s do intersect very nicely at a point. In fact we
can fit our data, close to the critical point to the form YV L = f0 + f1tL1/ν + f2tL2/ν , with ν = 0.745.
Such a fit reveals that Tc = 2.83575(10). In the inset of figure 4 we plot LYV as a function of tL1/ν .
We see that all of the data collapses nicely to a single function as expected. Thus, we confirm that
our model shows O(4) critical behavior at a finite non-zero value of C.

In summary, thermodynamics of strongly coupled QED with two flavors of staggered fermions
including a four-fermion coupling C, which models the chiral phase transition in two flavor QCD
with a tunable anomaly, shows a first order transition at C = 0 and an O(4) critical behavior at
C = 0.3. In particular we do not see the second order transition predicted in [15]. We are currently
trying to locate and study the properties of the tri-critical point present in the C−T plane.

Part of this work was done in collaboration with D.J.Cecile. For a theoretical discussion of the
properties of our model and the algorithm used we refer to his contribution to these proceedings.
This work was supported in part by a DOE grant DE-FG02-05ER41368.
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