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We summarize our recent results on the phase diagram of QCD with Nf = 2+1 quark flavors, as
a function of temperatureT and quark chemical potentialµ . Using staggered fermions, lattices
with temporal extentNt = 4, and the exact RHMC algorithm, we first determine the critical line in
the quark mass plane(mu,d,ms) where the finite temperature transition atµ = 0 is second order.
We confirm that the physical point lies on the crossover side of this line. Our data are consistent
with a tricritical point at(mu,d,ms) = (0,∼ 500) MeV.
Then, using an imaginary chemical potential, we determine in which direction this second-order
line moves as the chemical potential is turned on. Contrary to standard expectations, we find
that the region of first-order transitions shrinks in the presence of a chemical potential, which is
inconsistent with the presence of a QCD critical point at small chemical potential.

The emphasis is put on clarifying the translation of our results from lattice to physical units, and

on discussing the apparent contradiction of our findings with earlier lattice studies.
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Figure 1: Schematic phase transition behaviour ofNf = 2+ 1 flavor QCD for different choices of quark
masses(mu,d,ms), at µ = 0 (from [1]).

1. Introduction

In recent years, considerable efforts have been devoted to the determination of the phase di-
agram of QCD at finite temperature and density [1]. At zero chemical potential, the behaviour as
a function of temperature depends on the quark massesmu,d andms, and expectations are summa-
rized in Fig. 1. In the limits of zero and infinite quark masses(lower left and upper right corners),
order parameters corresponding to the breaking of a symmetry can be defined, and one finds nu-
merically that a first-order transition takes place at a finite temperatureTc. On the other hand,
one observes an analytic crossover at intermediate quark masses. Hence, each corner must be sur-
rounded by a region of first-order transition, bounded by a second-order line as in Fig. 1. The line
in the heavy-quark corner has been studied in [2]. Here, we want to determine the chiral critical
line.

Along both lines, the universality class is that of the 3d Ising model. Therefore, a powerful
tool to determine the critical couplings is the Binder cumulant B4 ≡ 〈δX4〉/〈δX2〉2, whereδX =

X − 〈X〉, and we take forX the u,d quark condensatēψψ . On lattices 83,123 and 163 × 4, we
estimate the critical couplings as those for whichB4 = 1.604.., the 3d Ising value. For each mass
point (mu,d,ms), we accumulate at least 200k RHMC trajectories, and interpolate among 4 or more
mu,d values to find the criticalmu,d massmc at a givenms. We obtain the set of points in Fig. 4, left.

We then consider the effect of a baryonic chemical potential. As a function ofµ , represented
vertically in Fig. 2, the critical line determined atµ = 0 spans a surface. The standard expectation
is depicted in Fig. 2 left. The first order region expands asµ is turned on, so that the physical point,
initially in the crossover region, eventually belongs to the critical surface. At that chemical potential
µE, the transition is second order: that is the QCD critical point. Increasingµ further makes the
transition first order. A completely different scenario arises if instead the first-order region shrinks
asµ is turned on. In that case (Fig. 2 right), the physical point remains in the crossover region for
anyµ . Since the phenomenologically interesting question is whether a QCD critical point(µE,TE)

exists at smallµE,µE/TE . 1, this question can be addressed by an analytic continuation based
on a Taylor expansion. Using an imaginary chemical potential [3, 4], we determine the curvature
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Figure 2: The chiral critical surface in the case of positive (left) and negative (right) curvature. If the
physical point is in the crossover region forµ = 0, a finiteµ phase transition will only arise in the scenario
(left) with positive curvature, where the first-order region expands with|µ |. Note that for heavy quarks, the
first-order region shrinks with|µ | (right) [5].

dmc

dµ2 |µ=0 of the critical surface atµ = 0. We find that it is negative, so that the first-order region
shrinks as in Fig. 2 right. Note that in the opposite corner, the first-order region also shrinks [5].

Sec. 2 tests our methodology in theNf = 3 case. Sec. 3 describes theNf = 2+ 1 study.
Sec. 4 compares our results with earlier lattice studies anddiscusses the various limitations of our
approach.

2. Nf = 3

We first check our methodology in the case of 3 degenerate flavors. This is basically a repeat
of Ref. [6], this time using the RHMC algorithm [7] instead ofthe R algorithm.

The RHMC algorithm eliminates the stepsize error of the R algorithm, which differs in mag-
nitude in the chirally symmetric and broken phases [8]. As a result, the value ofmc(µ = 0) is
considerably different:(amc(µ = 0)) moves from 0.033(1) (R alg.) [6] to 0.0260(5) (see Fig. 3,
left). We have checked, by performing zero-temperature simulations at this quark mass, that this
is not a simple renormalization effect, but that the physical ratio mπ/Tc is lowered by about 10%.
Therefore, an exact algorithm appears mandatory for the study of theNf = 2+1 critical line. More-
over, RHMC turns out to be vastly more efficient, by up to a factor 20 in our case for the smallest
quark masses [9].

We now turn on an imaginary chemical potentialµ = iµI , and for eachµI monitor the Binder
cumulantB4 as a function of the quark mass. Our results are summarized inFig. 3, left. The
chemical potential has almost no influence onB4. A lowest-order fit, linear inamand(aµ)2, gives
the error band Fig. 3, right, corresponding to

amc(aµ) = 0.0270(5)−0.0024(160)(aµ)2 (2.1)

Care must be taken for the conversion to physical units. The crucial point is that, as we
increase the chemical potentialµI , we tune the gauge couplingβ upwards to maintain criticality,
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Figure 3: Left: B4(am,aµI ) for different imaginary chemical potentials. Right: One-sigma error band for
the critical massamc(aµI ) resulting from a linear fit.

so thata(β ) decreases: our observation thatamc(µI ) ≈ const. doesnotmean thatmc(µI ) ≈ const.,
but thatmc(µI ) increases withµI , or decreaseswith a real chemical potentialµ . If we express

amc(µ)

amc(0)
= 1+

c′1
amc(0)

(aµ)2 + ... (2.2)

mc(µ)

mc(0)
= 1+c1

( µ
πT

)2
+ ... (2.3)

thenc1 andc′1 are related by

c1 =
π2

N2
t

c′1
amc(0)

+

(

1
Tc(m,µ)

dTc(m,µ)

d(µ/πT)2

)

µ=0
(2.4)

wherem= mc(µ) in the second term. Writing the transition temperature as

Tc(m,µ)

Tc(mc
0,0)

= 1+A
m−mc

0

πT
+B

( µ
πT

)2
+ ... (2.5)

one obtains

c1 =

(

B+
π2

N2
t

c′1
amc(0)

)(

1−A
mc

0

πT

)−1

. (2.6)

c′1 and mc
0

πT are both small, so thatc1 is nearly equal toB. Estimates ofB andA can be obtained by
converting our result for the pseudo-critical gauge coupling

β0(am,aµ) = 5.1369(3)+1.94(3)(am−amc
0)+0.781(7)(aµ)2 (2.7)

to physical units. Using the 2-loopβ -function givesA = 2.111(17),B = −0.667(6) so that finally

mc(µ)

mc(0)
= 1−0.7(4)

( µ
πT

)2
+ ... (2.8)

The error above is conservative and includes the uncertainty from using different fitting forms (see
Table 2, Ref. [10]). The main source of systematic error comes from using the 2-loopβ -function
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Figure 4: Left: The chiral critical line in the bare quark mass plane atµ = 0. Nf = 3 is shown by the
solid line. Also shown are the physical point according to [12], and a fit corresponding to a tricritical point
mtric

s ∼ 2.8T. Right: Comparison of the critical line atµ = 0 andaµI = 0.2.

to obtainB. The non-perturbativeβ -function varies more steeply and may increaseA andB, in
magnitude, by up to a factor 2. This will makec1 more negative.

We thus have clear evidence that, in theNf = 3 theory on anNt = 4 lattice, the region of first-
order transitionsshrinksas a baryon chemical potential is turned on, and the “exotic scenario” of
Fig. 2, right, is the correct one. This result is further supported by recent simulations of the same
theory, under an isospin chemical potential [11].

3. Nf = 2+1

We now proceed to the non-degenerate case. First, atµ = 0, we map out the line of second-
order transitions in the(amu,d,ams) plane. Our results, shown Fig. 4, left, are in qualitative agree-
ment with expectations Fig. 1. In particular, they are consistent with the possible existence of a
tricritical point (mu,d = 0,ms = mtric

s ). Using its known, Gaussian exponents, our data favor (blue
line in Fig. 4 left) a heavymtric

s ∼ 2.8Tc.

A more immediate issue is whether the QCD physical point lieson the crossover side of the
critical line as expected. For that purpose, we have performed spectrum calculations atT ∼ 0, at
the parameters corresponding to the horizontal arrow in Fig. 4 left (amu,d = 0.005,ams = 0.25,β =

5.1857). They show thatms is approximately tuned to its physical value (mK
mρ

∼ mK
mρ

|phys), while the
pion is lighter than in QCD (mπ

mρ
= 0.148(2) < 0.18). This confirms that the physical point lies on

the right of the critical line, i.e. in the crossover region1. This conclusion has been confirmed by
very recent calculations on finer lattices [13]. Also, we findTc to vary little along the critical line,
in accordance with model calculations [14].

We now couple an imaginary chemical potentialaµI = 0.2 to the two light flavors, and measure
the change in the critical massamu,d as in theNf = 3 case. Fig. 4 right shows the same trend as
for Nf = 3: the critical mass is constant or slightly increasing,in lattice units. The conversion to

1In fact, our estimate of the lattice parameters corresponding to the physical point is consistent with that of Fodor
& Katz using the same action, but the R algorithm [12].
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physical units proceeds as in eqs.(2.2-2.8). Since the critical gauge couplingβ0(aµI ) increases
with µI , the coefficientB, which is the dominant contribution toc1, is negative. Together with a
very small or slightly negative value forc′1, it implies again that the first-order regionshrinksas the
baryon chemical potential is turned on, and the “exotic scenario” of Fig. 2, right, is the correct one.

This statement comes with several caveats:(i) our lattice is very coarse (a ∼ 0.3 fm); (ii)
as we consider lightermu,d, our box becomes small (mπL ∼ 1.7 for the worst case);(iii ) we use
“rooting” of the staggered determinant to simulate 1 and 2 flavors, albeit our measure is positive
with an imaginaryµ , so that we avoid the pitfalls of [15].

4. Discussion

Our results appear in qualitative contradiction with thoseof Fodor & Katz [12] and of Gavai
& Gupta [16], which both conclude for the existence of a critical point(µE,TE) at small chemical
potentialµE/TE . 1. Let us consider the reasons for such disagreement.
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Figure 5: Left: Effect of keeping the quark mass fixed in lattice units in [12]. Right: Comparison at finiteµ
between theNf = 2+1 and theNf = 2 theory considered in [16].

• Fodor & Katz obtain Monte Carlo results atβ = βc,µ = 0, and perform a double reweighting
in (β ,µ) along the pseudo-critical lineβc(aµ). By construction, this reweighting is performed at a
quark mass fixedin lattice units: amu,d =

mu,d

Tc
= const.. Since the critical temperatureTc decreases

as they turn onµ , so does their quark mass. This decrease of the quark mass pushes the transition
towards first order, which might be the reason why they find a critical point at smallµ . This effect
is illustrated in the sketch Fig. 5, left, where the bent trajectory à la Fodor & Katz intersects the
critical surface, while the vertical line of constant physics does not.

Put another way, Fodor & Katz measure the analogue of eq.(2.2) instead of (2.3). From their
Fig. 1 (Ref. [12]), the coefficientc′1 which one would extract would be essentially zero like ours.
As in our case, the variation ofTc with µ makes a dominant contribution, which may change the
results qualitatively.

• Gavai & Gupta try to infer the location of the critical point by estimating the radius of
convergence of the Taylor expansion of the free energy in(µ/πT)2. Regardless of the systematic
error attached to such estimate when only 4 Taylor coefficients are available, we want to point out
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that they consider a theory without strange quark, i.e.Nf = 2 only. The(µ ,T) phase diagram
of such a theory is qualitatively different from that ofNf = 2+ 1 QCD. At µ = 0, the order of
the finite-temperature transition asmu,d → 0 is not settled [17]. Assuming a second-orderO(4)

transition, one expects then a tricritical point at(mu,d = 0,µ = µ tric), beyond which a non-zero
critical massmc

u,d(µ) can be defined, as sketched in Fig. 5 right. The quantitative relevance of
results, even accurate, for thisNf = 2 theory to QCD is unclear to us.

Therefore, we find no inconsistency between our results and those above. We conclude that
the existence of a critical point(µE,TE) in QCD at small chemical potentialµE/TE . 1 is an open
question. Our numerical evidence, with the caveats mentioned in Sec. 3, is that the curvature of
the critical surface is as illustrated Fig. 2 right. Our mainsystematic error comes from our coarse
lattice spacinga ∼ 0.3 fm [18]. If confirmed on a finer lattice, the implications of our finding
are as follows. In the region where a leading Taylor expansion of the critical surface is a good
approximation, i.e.µ/T . 1, corresponding to the experimentally accessible regime,no critical
point exists which is analytically connected toµ = 0. Of course, we cannot exclude that the QCD
phase diagram is more complex, and partly inaccessible to our imaginaryµ + Taylor expansion
strategy.
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