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1. Introduction

Confinement of color is a well established property of strongly interacting matter at low tem-
peratures and densities, even if not yet fully understood starting from the QCD first principles. The
existence of a high temperature phase transition to a deconfined state of matter has been predicted
by numerical simulations of lattice QCD and is presently under investigation in Heavy Ion exper-
iments. In the present study we address the question regarding the fate of confining properties as
the low temperature - high density phase transition is crossed: that is relevant in order to charac-
terize the nature of matter in compact astrophysical objects and more in general to understand how
deconfinement at high densities compares to what happens at high temperatures.

Numerical studies of QCD at finite density are notoriously difficult because of the sign prob-
lem, which makes usual importance sampling simulations unfeasible: for that reason we have stud-
ied the theory with 2 colors, where that problem is absent. No sensible differences are expected for
the confining properties of the theory when going from Nc = 2 to Nc = 3, where Nc is the number
of colors: for that reason we believe that our study could be relevant also for real QCD.

Indications about deconfinement at high density obtained so far have been based on the anal-
ysis of the Polyakov loop [1], which however is not a true order parameter for confinement in
presence of dynamical fermions. Different order parameters can be constructed in the framework
of specific mechanisms for color confinement. One successful mechanism is that based on dual
superconductivity of the QCD vacuum [2, 3, 4], which relates confinement to the spontaneous
breaking of a dual magnetic symmetry induced by the condensation of magnetic monopoles: in
that context a disorder parameter can be developed [5, 6] which is the expectation value of a mag-
netically charge operator, 〈M 〉1, and which has been successfully tested as an order parameter for
color confinement both in the quenched theory [7, 8] and in presence of dynamical fermions [9, 10].
Similar parameters have been constructed elsewhere [11, 12, 13, 14].

Our plan is to study the behaviour of 〈M 〉 in the whole T −µ plane, in order to characterize the
confining properties of the various phases in the QCD phase diagram. In Section 2 we will review
the definition of the disorder parameter and present our strategy for its numerical study; some
preliminary results concerning the theory with 8 flavors of staggered quarks will be presented in
Section 3.

2. The disorder parameter 〈M 〉

M (~x, t) is defined in the continuum as the operator which creates a magnetic charge in~x, t by
shifting the quantum field by the monopole vector potential~b⊥(~y−~x)

M (~x, t) = exp

[

i
∫

d~y ~E⊥ diag(~y, t)~b⊥(~y−~x)

]

(2.1)

Its expectation value, when discretized on the lattice, appears in the following form

〈M 〉 = Z̃/Z ; (2.2)

1We change the usual notation for the disorder operator, 〈µ〉, in order to avoid confusion with the notation for the
chemical potential.
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Z is the usual QCD partition function

Z =
∫

(DU) detM(µ)e−βS (2.3)

where M is the fermionic matrix and S is the pure gauge action, while the partition function Z̃ is
obtained from Z by a change in the pure gauge action S → S̃ which adds the monopole field to the
temporal plaquettes at timeslice t.

Being expressed as the ratio of two different partition functions, the numerical study of 〈M 〉

is a highly non trivial task: while numerical methods have been recently developed which permit
a direct determination of 〈M 〉 [15], we will not use them in the present study since they involve
the combination of several different Monte Carlo simulations, which in presence of dynamical
fermions could be unpractical. We will instead study, as usual, susceptibilities of the disorder
parameter, from which the behaviour of 〈M 〉 at the phase transition can be inferred.

For instance, being interested in 〈M 〉 as a function of β , as for the µ = 0 phase transition, one
usually measures [5, 6, 7]

ρ =
d

dβ
ln〈M 〉 =

d
dβ

ln Z̃ −
d

dβ
lnZ = 〈S〉S −〈S̃〉S̃ (2.4)

where the subscript means the pure gauge action used for Monte Carlo sampling. The disorder
parameter can be reconstructed from the susceptibility ρ , exploiting the fact that 〈M 〉= 1 at β = 0

〈M 〉(β ) = exp

(

∫ β

0
ρ(β ′)dβ ′

)

. (2.5)

In particular ρ ' 0 in the confined phase means 〈M 〉 6= 0, a sharp negative peak of ρ at the phase
transition implies a sudden drop of 〈M 〉 and ρ diverging in the thermodynamical limit in the
deconfined phase means that 〈M 〉 is exactly zero beyond the phase transition.

At finite temperature and density we are interested in studying the behaviour of 〈M 〉 in the
two parameter space (β ,µ), where µ is the chemical potential. For that reason we introduce the
new susceptibility

ρD ≡
d

dµ
ln〈M 〉 =

d
dµ

ln Z̃ −
d

dµ
lnZ = 〈N f 〉S̃ −〈N f 〉S (2.6)

where N f is the quark number operator. The dependence of 〈M 〉 on the chemical potential µ can
then be reconstructed as follows:

〈M 〉(β ,µ) = 〈M 〉(β ,0)exp

(

∫ µ

0
ρD(µ ′)dµ ′

)

so that, if the starting point at µ = 0 is in the confined phase (〈M 〉(β ,0) 6= 0), the behaviour
expected for ρD(µ) in correspondence of a possible finite density deconfinement transition will be
the same showed by ρ across the finite temperature transition.

3. Numerical results

We have used staggered fermions corresponding to N f = 8 degenerate continuum flavors, with
bare mass am = 0.07. Different lattices have been considered, with a fixed temporal extent Lt = 6
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Figure 1: Results obtained for ρD

and a variable spatial size (only Ls = 8,16 so far) in order to make a finite size scaling analysis of
the phase transition. The critical value of β at µ = 0 is βc ' 1.59 [16]: we have made simulations
at different values of the chemical potential µ and at a fixed value of β = 1.5 < βc, i.e. starting from
the confined phase at µ = 0. An exact HMC algorithm has been used and standard actions both
in the gluonic and in the fermionic sector: we have used trajectories of unit length and a step size
variable from 10−2 to 4 · 10−3: the reduced time step was necessary in order to keep a reasonable
acceptance rate around and above the phase transition, as a consequence of the presence of small
eigenvalues of the fermion matrix. The same problem was at the origin of a severe slowing down
around the critical value of µ , which made the availability of the recently installed apeNEXT facil-
ity in Rome essential in order to carry out simulations on the larger lattice (Ls = 16). Simulations
on the smaller lattice Ls = 8 have been carried out both on the APEmille facility in Pisa and on the
PC farm of INFN in Genova, using there a code adapted from the publicly available version by the
MILC collaboration.

Our results for ρD as a function of µ are shown in Fig. 1. ρD shows a clear peak at a critical
value of the chemical potential µc ' 0.3. The peak deepens as the lattice volume is increased, sug-
gesting the presence of a true phase transition at which 〈M 〉 drops to zero and confinement (dual
superconductivity) disappears. The position of the peak is coincident with that of other susceptibil-
ities and we show in Fig. 2 the case of the Polyakov loop: our data are still noisy and do not show
any clear size dependence, which however is not expected since the Polyakov loop is not an order
parameter for the phase transition.

A more detailed analysis of the disorder parameter around the phase transition can be carried
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Figure 2: Results obtained for the suscepibility of the Polyakov loop.

out as follows. At fixed T we can assume the following finite size scaling behaviour for 〈M 〉 as a
function of µ .

〈M 〉 = L−β/ν
s Φ((µ −µc)L

1/ν
s )

from which it is easy to derive

ρD = L1/ν
s φ((µ −µc)L

1/ν
s ) (3.1)

Our data show a nice scaling with ν ∼ 0.66, as shown in Fig. 3, which is compatible with a
second order phase transition in the universality class of the 3d Ising model.

4. Conclusions

We have made use of the disorder parameter 〈M 〉 detecting dual superconductivity of the
vacuum to inspect the confining properties of QCD with 2 colors at finite temperature and density.
The study has been carried our with N f = 8 flavors of staggered fermions. In order to analyse
〈M 〉 as a function of the chemical potential µ we have introduced a new susceptibility ρD =

d/dµ ln〈M 〉, showing the presence of a phase transition at finite density where confinement (dual
superconductivity) disappears; the transition is coincident with those signalled by other quantities
such as the Polyakov loop. A preliminary finite size scaling analysis of the disorder parameter is
compatible with a phase transition in the universality class of the 3d Ising model.

After these preliminary results, we plan in the future to make a more extensive study of the
disorder parameter in order to characterize the whole phase diagram of the theory with two colors,
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Figure 3: Finite size scaling analysis for ρD

with a particular interest in the region of low temperatures and high densities. To that aim, a com-
bined study of both susceptibilities, ρ and ρD, could be particularly useful: indeed the knowledge
of ~∇ ln〈M 〉, with ~∇ = (d/dβ , d/dµ), in the whole β − µ plane, could give information not only
on the location but also on the direction of the critical line, thus permitting a more careful study of
the phase diagram.
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