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We investigate mesonic screening correlators at T = 2Tc using the overlap fermions in the

quenched approximation, where Tc is the QCD phase transition temperature. Using lattices with

temporal extent up to 8 we found that both pseudoscalar and vector correlators exhibit a nice cosh

behaviour, leading to a plateau behaviour in the local screening masses as a function of distance.

The ρ and π masses so determined show very little variation with the lattice spacing a. This au-

gurs well for the use of chiral fermions, and further suggests the small deviations of these masses

from the ideal gas values are genuine effects of interactions.
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1. Introduction

Lattice quantum chromodynamics (QCD) predicts a new phase, called Quark-Gluon Plasma
(QGP), at high enough temperatures. Furthermore, it has contributed substantially in our under-
standing of this phase, providing most of the solid information we currently have about QGP. Nev-
ertheless, several outstanding questions about the nature of QGP still remain. Since the very early
days, it has been recognised that the bulk thermodynamic quantities, such as the energy density,
cannot be explained by a straightforward weak coupling expansion. With more precise compu-
tations on the lattice as well as higher orders of perturbation theory, the problem became more
and more acute. Modifications in form of certain resummations, non-perturbative schemes, and
intuitive models were proposed to explain the discrepancy. Quark number susceptibilities provided
an independent, mostly successful, check on these, giving the weak coupling picture a boost, at
least for T ≥ 3-5 Tc. On the other hand, the J/ψ and ηc mesons seem to survive up to a few Tc.
This together with the results from the relativistic heavy ion collider at BNL, which suggest a very
small viscosity, gave rise the picture of a strongly coupled QGP just above Tc. Recently, a strong
evidence from lattice QCD simulations emerged [1], suggesting that the fermionic excitations of
QGP behave like quarks already close to Tc. Thus an excitation carrying unit strangeness and 1/3
baryon number also carries electric charge of - 1/3, i.e., behaves like a strange quark.

Clearly for a complete picture to emerge, it seems prudent to add as many pieces of infor-
mation as can be obtained. Static screening lengths, which we focus on in this work, constitute
one such important clue. One studies the screening of currents in a medium to extract long-range
information on its composition. For exciting mesons with specific quantum numbers from the vac-
uum, simplest forms of currents with those quantum numbers are chosen. They should exhibit
deconfinement related changes above the QCD phase transition temperature (Tc) [2], while yield-
ing the known spectrum at low temperatures. Detailed studies have shown that this indeed does
happen in the vector, and axial-vector channels: the screening above Tc appears to be due to nearly
non-interacting quark anti-quark pairs in the medium [3, 4]. However, the scalar and pseudo-scalar
screening masses show more complicated behavior— strong deviations from the ideal Fermi gas,
and a strong temperature dependence. This puzzling behavior is generic— it has been seen in
quenched [5] and dynamical simulations with two [6] and four flavors [2, 3, 4, 7] of staggered
quarks, as well as with Wilson quarks [8]. Staggered fermions have broken flavour symmetry on
the lattice and, indeed, extrapolation to continuum limit in the quenched case gave hints [9] of the
deviations being cut-off effects. However, the extraction of these masses both for the staggered and
the Wilson case was difficult due to the complex behaviour of the correlators, which lead to the
failure of the expected plateau in the effective distance dependent masses.

Since the number of pions and their nature is intimately related to the actually realized chiral
symmetry on the lattice, one expects any good realization of chiral fermions on the lattice to provide
better insight into the problem of screening lengths. Overlap fermions [10] have the advantage
of preserving exact chiral symmetry on the lattice, i.e, at finite lattice spacing, for any number of
flavours in contrast to the Wilson fermions which break all chiral symmetries or staggered fermions
which do so only partially but at the expense of breaking flavour symmetry. In our earlier work
[11], we showed the pion screening mass to be closer to the ideal gas value but still distinctly lower
than rho screening mass. We employed then lattices with 4 temporal sites, Nt = 4, and a conjugate
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gradient based method for the overlap-Dirac operator. For temperatures 1.25 ≤ T/Tc ≤ 2, we
observed a very mild temperature dependence of the ratio of screening mass and the temperature.
In the current study, we address the issue of continuum limit of these screening masses by extending
to Nt = 6 and 8. We also used lattices with long z extent to investigate more carefully the lowest
lying masses and the faster Zolotarev method for the overlap-Dirac operator. All computations
were done at T = 2Tc, since any temperature in the range 1.25Tc to 2 Tc could suffice in view of
our earlier observation on the Nt = 4 lattice.

2. Simulation Details

The massless overlap Dirac operator (D) can be defined [12] in terms of the Wilson-Dirac
operator (Dw) for negative mass by the relation

D = 1+Dw(D†
wDw)−1/2. (2.1)

As in [11], we chose the negative mass in Dw to 1.8 in this work as well. The corresponding
operator for massive quarks is

D(ma) = ma+(1−ma/2)D, (2.2)

where m is the bare quark mass, a the lattice spacing, and D is defined above. We used the usual
quark propagator, G(ma) = [1−D/2]D−1(ma). To compute this, one needs the inverse of the
massive overlap D, of eq. (2.2), which, as is widely known, needs a nested series of two matrix
inversions. At each step in the numerical inversion of D, one has to invert (D†

wDw)1/2. For the
matrix M = D†

wDw, and a given source vector b, we computed y = M−1/2b by using the Zolotarev
algorithm [13]:

M−1/2b =
NO

∑
l=1

(

cl

M +dl
b

)

. (2.3)

Here the coefficients cl and dl are computed with Jacobi elliptic functions for a chosen order of
approximation NO and a ratio κ = µmax/µmin where µmax and µmin bound of the domain for which
we apply the approximation. In our implementation of the algorithm [14], we first compute the
lowest and highest eigenvalues of M for a given required precision ε . Then we define the bound of
the domain by increasing by 10% the domain of eigenvalues. The order NO is defined by requiring
a precision ε/2 for the approximation of 1/

√
z in the entire domain. We used ε = 10−5 and found

that typically NO ∼ 7−8 was needed. With these parameters, one calculates the approximation in
eq. (2.3) by a multishift CG-inversion at the precision ε/2.

The lattice sizes we employed were 4×102×16, 6×142×24 and 8×182×32, which ensure
that the transverse dimensions remains in the confined phase at 2Tc. The corresponding couplings
are respectively the known critical couplings on Nt = 8, 12 and 16 lattices. These β values are
6.0625, 6.3384 and 6.55. For the last value, no infinite volume extrapolation was available, unlike
the first two. Our choice was motivated by the 2-loop β -function, and consistency with the the
finite volume results. In each case, configurations separated by 1000 sweeps of a Cabbibo-Marinari
update were generated and 20-25 such configurations were used to compute the quark propagators.
The propagator G was computed on 12 point sources (3 colors and 4 spins) for 8 quark masses
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from m/T =0.008 to 0.8 using a multi-mass inversion of D†D. The tolerance used was ε = 10−3 in
this outer conjugate gradient.

3. Results

Figure 1 displays our results for the correlation functions of ρ and π along with the corre-
sponding ideal gas result on the 6× 142 × 24 lattice (left) and 8× 182 × 32 lattice (right). Both
display an excellent cosh behaviour, indicative of a dominance of a single mass scale, as the line
of a cosh-fit in each case shows. Moreover, one sees a very good agreement of the ρ-correlator
with the ideal gas on both lattices in essentially its entire 6-7 orders of magnitude fall. There are,
however, differences for the pion. In order to exhibit the comparison with ideal gas more clearly,
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Figure 1: Correlators for pion and rho compared with the corresponding ideal gas results on a 6×142 ×24
lattice (left) and a 8×182 ×32 lattice (right) at T = 2 Tc. The lines are single cosh fits.

we show in the left panel of Figure 2 the ratios of the two correlators with that for ideal gas on
the our largest lattice. While the deviations from ideal gas seem at ∼20 % level for ρ , those for
π-correlator range up to a factor of 5-6. Note that in both cases the ideal gas is larger at small
distances and smaller at large distances. As the right panel of the Figure 2 shows, the deviations
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Figure 2: Ratios of pion and rho correlators on 8×182 ×32 lattice with the corresponding ideal gas results
(left) and the variation of the pion-ratio with Nt (right).
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from ideal gas appear to increase progressively in the continuum limit, i.e, with increasing Nt .
Similar trend can also be seen in the case of ρ , although the size of deviations and the errorbars
make it much less conclusive. We define local masses, as usual, from the ratios of correlation
function at successive r values. As may be anticipated from Figure 1, these local masses
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Figure 3: Left panel shows the effective mass as a function of the separation r on 8×182 ×32 lattice. The
horizontal lines indicate the corresponding mass estimate. The right panel displays the plateau behaviour in
another variable advocated in [15].

for both ρ and π show demonstrate an excellent plateau behaviour. This is exhibited in the left
panel of Figure 3. The ideal gas results are also shown on the same panel for a comparison.
One sees very similar behaviour for them as the ρ-local mass but for the last three points which
have a distinct oscillatory pattern. This should be contrasted with the corresponding results for
the staggered fermions [9] or Wilson fermions [15], both of which display rather limited range of
plateau, if at all. The right panel shows this explicitly by displaying the local masses as a function
of a variable, 1/2πrT , advocated in [15]. While the plateau behaviour is manifestly seen even in
this variable in our overlap fermion results in the right panel of Figure 3, no such plateau is visible
in the corresponding figure (Figure 1) of [15].

The plateau in local masses also brings out the complementary nature of the long-range infor-
mation they contain. The small-distance behaviour of the correlator, and the corresponding local
masses, have nothing to do with the plateau value. On the other hand, local quantities, such as
the chiral condensate, are related to the integral of the correlator and are thus dominated by the
small-distance behaviour only. From Figure 1, one thus surmises that the chiral condensate agrees
with its ideal gas value well on both Nt = 6 and 8, although the local mass for pion in either case
does not. Furthermore, the existence of the plateau suggests existence of genuine bound states in
both ρ and π channels.

Figure 4 exhibits our results on Nt = 6 and 8, together with our earlier results [11] on Nt = 4 for
the ratio of mπ/mρ (left) and mπ/m f ree (right). The estimates for mπ and mρ were obtained from
the plateaux in Figure 3, and checked independently by a direct single cosh fit to the correlation
function in the interval of the local mass plateau in each case. The m f ree too was obtained from a fit,
and was found to agree with the corresponding value of its smaller plateau region. Also shown are
our results on cubic lattices having the same transverse size. Both panels display very little, if any,
lattice spacing, a, dependence, suggesting the pion screening length to remain about 8 % below the
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Figure 4: Continuum limit of the ratios mπ/mρ (left) and mπ/m f ree (right).

ideal gas value, or more than 2 σ away, whereas the mρ is consistent with the ideal gas, as seen
by comparison of the two panels or alternatively Figure 3. The ratio mπ/mρ does not appear to
get affected by the geometry of the lattice, whereas the ratio mπ/m f ree seems smaller on the cubic
lattice.

4. Summary

Extending our earlier work [11] on the hadronic screening lengths on Nt = 4 lattice to Nt = 6
and 8 at a fixed temperature of 2Tc on lattices with large z extent, we found a single cosh behaviour
in both ρ and π correlators on both lattices. This led to a convincing plateau behaviour in the
corresponding local masses, suggesting the presence of a bound state in each case. The ρ-correlator
appeared to be in very good agreement with the ideal gas correlator on the same lattice whereas the
π-correlator differed from it on all Nt . In fact, the deviations appear to increase in the continuum
limit, i.e, with increasing Nt . Ratios of the extracted screening masses displayed very little, if any,
dependence on the lattice spacing. While the ρ screening mass is in agreement with the free value,
the π screening mass remained lower by about 8 % or more than 2σ . Its constancy with the lattice
spacing a suggests the deviation to be a genuine interaction effect.
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