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1. Introduction

The determination of the equation of state (EOS) of stromgjigracting matter on the lattice
requires actions with small discretization effects, aiséiallight quark spectrum and good control
over the systematic errors in order for the result to be eglewn helping to understand experimental
findings. For our thermodynamics studies we use the asqtarck gaction [1] for 2+1 flavors,
combined with a one-loop Symanzik improved gauge actionB®th actions are highly improved
and have discretization errors©f asa?, a*) andO(aZ2a?, a*), respectively. We do our simulations
along trajectories of constant physics using the dynanmdaborithm [3] and thus our calculations
are subject to finite step-size errors. Here we describe #thad we use to estimate and correct
for this systematic error.

To approximate the experimental conditions as closely asiple we have started a project
which extends our EOS calculation to a small non-zero chalmutential. For this purpose we use
the Bielefeld—Swansea Taylor expansion method [4] andirpirery results for the EOS at a set of
chemical potentials are presented.

2. Simulation overview

We study the quark-gluon system at a range of temperatuoss) dtajectories of constant
physics. Such trajectories are defined by keeping the ratigsn, and m,_/m, fixed while
changinga at a constant\;. We work with two approximate trajectories; for both of théne
heavy (strange) quark mass is fixed to the physical value within about 20%. The light duar
masses for the two trajectories angq ~ 0.2ms (m;/m, ~ 0.4) andmyg ~ 0.1mg (My/m, = 0.3),
respectively. For both trajectories we have performedutalions atN; = 6. In addition, a study
atN; = 4 was done for then,y ~ 0.1ms trajectory in order to compare the effect of the larger dis-
cretization errors on the EOS. The constant physics t@jestare parametrized with RG-inspired
formulae using the hadron spectrum data at certain anchioispgsee [5] for explicit formulae).

The lattice gauge configurations are generated with stes sizthe R algorithm chosen to be
the smaller of 0.02 andn2,4/3, and occasionally smaller still. Most of the gauge confions
used for the analysis were generated before the RHMC digoifis] became known. Since Lattice
2005 [5], we have doubled the statistics and added a newthigperature run g8 = 7.08 @ ~
0.086 fm) and a zero-temperature runfat 6.275 @~ 0.232 fm) for theN; = 4 case. For both
trajectories new zero- and high-temperature run=at6.85 (@~ 0.110 fm) were included as well.
For the list of the rest of the run parameters see [5]. Thizéatipacinga has been determined at
zero temperature using the heavy quark potential’('with the overall scale set by thé 1S-2S
mass splitting [7]. We fit all the available data to an appiatprone-loop RG-inspired formula [5]
which gives the lattice spacing as a function of the quarksesand the gauge coupling and allows
us to determine the temperature along the constant phyajestories.

3. TheEOSanalytic form

We determine the EOS using the integral method [8], whergthssure is calculated as an
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integral of the interaction measure and the energy dersayinear combination of both:

4 dBpl dBrt dBch
la™ = — mA<P>_lzdlnaA<R>_16dlnaA<C>
ng [d(msia) , du —_dMm
—Zzl dina A<ww>f+mA<wEw>f ; 3.1)
pat = —/Inal(a’)(a’)“dlna’, (3.2)
Inag
ga* = la*+ 3pa. (3.3)

For physics quantities and parameter definitions in the alsee [5].

4. Systematic errorsand EOSresults

Our calculation is affected by the following systematicoesr finite volume effects, choice
of the lower integration limit in Eqg. (3.2) and the finite steige error in the R algorithm. The
first two errors are relatively straightforward to estima@g conducting an EOS calculation along
the myg ~ 0.1ms, Ny = 4 trajectory on a small 8x 4) volume and comparing it with the result of
the calculation on a larger (3% 4) volume, we have determined that the finite volume effexts a
negligible. To estimate the error introduced by postutathre lower integration limitin Eq. (3.2) to
be at the coarsest available lattice scale in our simulsittona given trajectory, we have calculated
the pressure of an ideal pion gas at the corresponding lcavedable temperature points. The
value of the ideal pion gas pressure at these temperatuad®ig as large as the statistical errors
we have. Thus, we have ignored this systematic error as well.

The finite step-size error determination is a much more ralprocedure. We have per-
formed some additional simulations at different step sizgiag the R algorithm and, recently,
some using the exact RHMC algorithm. We measured most of lilenig and the fermionic
observables in Eq. (3.1) at different step sizes. Figuredlvstthe step-size dependence of the
plaquette and the light chiral condensate for one case. {Epes&ze error in the plaquette variable
has a potentially significant effect on the EOS, whereastdp@size error in the chiral condensate
(and the rest of the fermionic observables) is negligiblee Neve found that the gluonic observ-
ables (plaquette, rectangle and parallelogram) haveairsiép-size dependence slopes. For this
reason we have concentrated on studying the finite stepsizections mainly for the plaquettes
and applied the same corrections to the rest of the gluorserghbles. Figure 2 shows the pla-
guette slopes determined from a set of runs with differesp sizes for both trajectories. We see
that for them,q ~ 0.2mg trajectory the slopes are small which means that the firgjg-size errors
can be ignored in this case. For thgg ~ 0.1mg trajectory we have more data for the plaquette
slopes from both\; = 6 and 4 simulations. We fit our data to a quadratic form and tusedor-
rect the EOS. Still, even in this case the finite step-sizergmre quite small. The finite step-size
corrections which we showed at the Lattice 2006 confererere wverestimated due to the limited
amount of data on step-size dependence we had at that timereR3 and 4 show our results for
the interaction measure, pressure and energy densitytbéemall finite step-size corrections in
themyg =~ 0.1m; trajectory have been included.
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Figure 1. Plaquette (left panel) and chiral condensate (right paveethe squared step siz# for the
improved action for the ensembleft= 6.467,am,q = 0.01676 anchnm; = 0.0821. The squared step size
used for production of this ensemble is 0.0001.
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Figure 2: Plaquette slopes for tha,gq =~ 0.1ms trajectory (left) and then,q ~ 0.2mg trajectory (right)vs.
the chiral condensate.

5. The EOSwith non-zero chemical potential

To include a non-zero chemical potential in the EOS calmutave use the Bielefeld-Swansea
Taylor expansion method [4]. According to this method thespure can be expanded as:

p _Inz

f-yw= 2 em(5) (7))

n,m=0

(5.1)

whereZ is the partition function, angd, , are the chemical potentials for the light and heavy quarks,
respectively. We note that the problems of rooted staggeradions at non-zero chemical poten-
tial [9] are not relevant here since all the expansion cdefiis are evaluated in the ,, = O theory.
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Figure 3: Interaction measures.temperature for both constant physics trajectorieshisd

— 6

16~ SB limit ———| b n 1
r 1 SB limit ———
14+ 32 - 5F i
r adhsa s % & & b 8
12? 7 4 g N A & |
L 10r 7 < %ﬁx a "
[ =3 _
Sl - A
o ] &
o N=6,m  =0.Im| ] 2r & o N=6,m  =0.Im| 7
4+ > N‘=6,mud=0.2mb - 1; o Nl=6,mud=0.2mS 7
sl A Nl:4,mud:0.lmS ] I A Nl:4,mud:0,1mS
& ! . ! , | , | , A | | . | . | .
(1)00 200 300 400 500 600 QOO 200 300 400 500 600
T(MeV) T(MeV)

Figure 4: Energy density (left) and pressure (right. temperature for both constant physics trajectories
andN's.

Due to CP symmetry the non-zero terms in the series havereyan. The non-zero coefficients
in the above are

11N 9™MInZ 5.2)
where now thgy ,, are the chemical potentials in lattice units. Similarly,thee interaction measure
we have:

I Nidinz 2 a\" ("
ﬁ——N—gm—anmm(?) <?> ’ (5.3)

n,m

Com(T)

where again only terms with event mare non-zero and

1 N2 gntm dinz (5.4)
- nimE NG A (N (nNO)™ [, o (dlna) ' '

To determine the EOS, we need to calculate derivatives asljead fermion matrix such as

bom(T) =

_ _1dMm
" IndetM, o TrM; O"Tr(M 4 g

, (5.5)
ou, auy,
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These derivatives are estimated on the ensembles of fattioag a constant physics trajectory us-
ing 200 random sources in the region of the phase transitmsgover and 100 sources outside that
region. We intend to study the EOS up@¢u®) on both constant physics trajectories. Currently we
have data for only one of them and not enough statistics tvweshe sixth-order terms. Thus the
preliminary results for the EOS we present here are caluifatO(u*) on themyg ~ 0.1mg, Ny = 4
trajectory only. We also sqt, = 0 here. Figure 5 shows our result for some of the coefficients
involved in Eqg. (5.1). An interesting feature is that the fioeents quickly reach the continuum
Stefan-Boltzmann limit abov&.. The pressure and energy density corrections due to theeron-
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Figure5: Some Taylor coefficients in the pressure expansion fonthex 0.1ms, N; = 4 trajectory.

chemical potential are shown in Figure 6.

6. Conclusions

We have calculated the EOS along two constant physics toaies with m,g =~ 0.1mg and
0.2mg using the R algorithm. To estimate the finite step-size swge have performed a number
of additional R algorithm simulations at different stepes and a few RHMC simulations along
the constant physics trajectories. The analysis of thigiaddl data shows that the finite step-size
errors are negligible on the,q ~ 0.2mg trajectory and small (in most cases less a than few percent)
on themyq ~ 0.1mg trajectory.
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Figure6: Pressure correctiohp = p(p ) — p(p = 0) and energy density correctidys = () — (4 =0)
for themyqg ~ 0.1ms, Ny = 4 trajectory toO(u*) and atuy, = 0.

We have started a non-zero chemical potential study of th& &@h 2+1 flavors using the
Bielefeld—Swansea Taylor expansion method and presengtichinary EOS results for a number
of differenty /T values.
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