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1. Introduction

The determination of the equation of state (EOS) of stronglyinteracting matter on the lattice
requires actions with small discretization effects, a realistic light quark spectrum and good control
over the systematic errors in order for the result to be relevant in helping to understand experimental
findings. For our thermodynamics studies we use the asqtad quark action [1] for 2+1 flavors,
combined with a one-loop Symanzik improved gauge action [2]. Both actions are highly improved
and have discretization errors ofO(αsa2, a4) andO(α2

s a2, a4), respectively. We do our simulations
along trajectories of constant physics using the dynamicalR algorithm [3] and thus our calculations
are subject to finite step-size errors. Here we describe the method we use to estimate and correct
for this systematic error.

To approximate the experimental conditions as closely as possible we have started a project
which extends our EOS calculation to a small non-zero chemical potential. For this purpose we use
the Bielefeld–Swansea Taylor expansion method [4] and preliminary results for the EOS at a set of
chemical potentials are presented.

2. Simulation overview

We study the quark-gluon system at a range of temperatures along trajectories of constant
physics. Such trajectories are defined by keeping the ratiosmπ/mρ and mηss/mφ fixed while
changinga at a constantNt . We work with two approximate trajectories; for both of themthe
heavy (strange) quark massms is fixed to the physical value within about 20%. The light quark
masses for the two trajectories aremud ≈ 0.2ms (mπ/mρ ≈ 0.4) andmud ≈ 0.1ms (mπ/mρ ≈ 0.3),
respectively. For both trajectories we have performed calculations atNt = 6. In addition, a study
at Nt = 4 was done for themud ≈ 0.1ms trajectory in order to compare the effect of the larger dis-
cretization errors on the EOS. The constant physics trajectories are parametrized with RG-inspired
formulae using the hadron spectrum data at certain anchor points (see [5] for explicit formulae).

The lattice gauge configurations are generated with step sizes in the R algorithm chosen to be
the smaller of 0.02 and 2mud/3, and occasionally smaller still. Most of the gauge configurations
used for the analysis were generated before the RHMC algorithm [6] became known. Since Lattice
2005 [5], we have doubled the statistics and added a new high-temperature run atβ = 7.08 (a ≈

0.086 fm) and a zero-temperature run atβ = 6.275 (a≈ 0.232 fm) for theNt = 4 case. For both
trajectories new zero- and high-temperature runs atβ = 6.85 (a≈ 0.110 fm) were included as well.
For the list of the rest of the run parameters see [5]. The lattice spacinga has been determined at
zero temperature using the heavy quark potential ("r1") with the overall scale set by theϒ 1S-2S
mass splitting [7]. We fit all the available data to an appropriate one-loop RG-inspired formula [5]
which gives the lattice spacing as a function of the quark masses and the gauge coupling and allows
us to determine the temperature along the constant physics trajectories.

3. The EOS analytic form

We determine the EOS using the integral method [8], where thepressure is calculated as an
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integral of the interaction measure and the energy density is a linear combination of both:

Ia4 = −6
dβpl

d lna
∆〈P〉−12

dβrt

d lna
∆〈R〉−16

dβch

d lna
∆〈C〉

−∑
f

nf

4

[

d(mf a)

d lna
∆〈ψ̄ψ〉 f +

du0

d lna
∆

〈

ψ̄
dM
du0

ψ
〉

f

]

, (3.1)

pa4 = −
∫ lna

lna0

I(a′)(a′)4d lna′, (3.2)

εa4 = Ia4 +3pa4. (3.3)

For physics quantities and parameter definitions in the above see [5].

4. Systematic errors and EOS results

Our calculation is affected by the following systematic errors: finite volume effects, choice
of the lower integration limit in Eq. (3.2) and the finite step-size error in the R algorithm. The
first two errors are relatively straightforward to estimate. By conducting an EOS calculation along
themud ≈ 0.1ms, Nt = 4 trajectory on a small (83×4) volume and comparing it with the result of
the calculation on a larger (123×4) volume, we have determined that the finite volume effects are
negligible. To estimate the error introduced by postulating the lower integration limit in Eq. (3.2) to
be at the coarsest available lattice scale in our simulations on a given trajectory, we have calculated
the pressure of an ideal pion gas at the corresponding lowestavailable temperature points. The
value of the ideal pion gas pressure at these temperatures isabout as large as the statistical errors
we have. Thus, we have ignored this systematic error as well.

The finite step-size error determination is a much more involved procedure. We have per-
formed some additional simulations at different step sizesusing the R algorithm and, recently,
some using the exact RHMC algorithm. We measured most of the gluonic and the fermionic
observables in Eq. (3.1) at different step sizes. Figure 1 shows the step-size dependence of the
plaquette and the light chiral condensate for one case. The step-size error in the plaquette variable
has a potentially significant effect on the EOS, whereas the step-size error in the chiral condensate
(and the rest of the fermionic observables) is negligible. We have found that the gluonic observ-
ables (plaquette, rectangle and parallelogram) have similar step-size dependence slopes. For this
reason we have concentrated on studying the finite step-sizecorrections mainly for the plaquettes
and applied the same corrections to the rest of the gluonic observables. Figure 2 shows the pla-
quette slopes determined from a set of runs with different step sizes for both trajectories. We see
that for themud ≈ 0.2ms trajectory the slopes are small which means that the finite step-size errors
can be ignored in this case. For themud ≈ 0.1ms trajectory we have more data for the plaquette
slopes from bothNt = 6 and 4 simulations. We fit our data to a quadratic form and use it to cor-
rect the EOS. Still, even in this case the finite step-size errors are quite small. The finite step-size
corrections which we showed at the Lattice 2006 conference were overestimated due to the limited
amount of data on step-size dependence we had at that time. Figure 3 and 4 show our results for
the interaction measure, pressure and energy density afterthe small finite step-size corrections in
themud ≈ 0.1ms trajectory have been included.
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Figure 1: Plaquette (left panel) and chiral condensate (right panel)vs the squared step sizeε2 for the
improved action for the ensemble atβ = 6.467,amud = 0.01676 andams = 0.0821. The squared step size
used for production of this ensemble is 0.0001.

Figure 2: Plaquette slopes for themud ≈ 0.1ms trajectory (left) and themud ≈ 0.2ms trajectory (right)vs.
the chiral condensate.

5. The EOS with non-zero chemical potential

To include a non-zero chemical potential in the EOS calculation we use the Bielefeld–Swansea
Taylor expansion method [4]. According to this method the pressure can be expanded as:

p
T4 =

lnZ
VT3 =

∞

∑
n,m=0

cnm(T)

(

µ̄l

T

)n(

µ̄h

T

)m

, (5.1)

whereZ is the partition function, and̄µl ,h are the chemical potentials for the light and heavy quarks,
respectively. We note that the problems of rooted staggeredfermions at non-zero chemical poten-
tial [9] are not relevant here since all the expansion coefficients are evaluated in theµl ,h = 0 theory.
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Figure 3: Interaction measurevs. temperature for both constant physics trajectories andNt ’s.

Figure 4: Energy density (left) and pressure (right)vs. temperature for both constant physics trajectories
andNt ’s.

Due to CP symmetry the non-zero terms in the series have evenn+ m. The non-zero coefficients
in the above are

cnm(T) =
1
n!

1
m!

N3
t

N3
s

∂ n+m lnZ
∂ (µl Nt)n∂ (µhNt)m

∣

∣

∣

∣

µl ,h=0
, (5.2)

where now theµl ,h are the chemical potentials in lattice units. Similarly, for the interaction measure
we have:

I
T4 = −

N3
t

N3
s

d lnZ
d lna

=
∞

∑
n,m

bnm(T)

(

µ̄l

T

)n(

µ̄h

T

)m

, (5.3)

where again only terms with evenn+mare non-zero and

bnm(T) = −
1

n!m!
N3

t

N3
s

∂ n+m

∂ (µl Nt)n∂ (µhNt)m

∣

∣

∣

∣

µl ,h=0

(

d lnZ
d lna

)

. (5.4)

To determine the EOS, we need to calculate derivatives of theasqtad fermion matrix such as

∂ n lndetMl ,h

∂ µn
l ,h

,
∂ nTrM−1

l ,h

∂ µn
l ,h

,
∂ nTr(M−1

l ,h
dMl ,h

du0
)

∂ µn
l ,h

. (5.5)
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These derivatives are estimated on the ensembles of lattices along a constant physics trajectory us-
ing 200 random sources in the region of the phase transition/crossover and 100 sources outside that
region. We intend to study the EOS up toO(µ6) on both constant physics trajectories. Currently we
have data for only one of them and not enough statistics to resolve the sixth-order terms. Thus the
preliminary results for the EOS we present here are calculated toO(µ4) on themud ≈ 0.1ms, Nt = 4
trajectory only. We also setµh = 0 here. Figure 5 shows our result for some of the coefficients
involved in Eq. (5.1). An interesting feature is that the coefficients quickly reach the continuum
Stefan-Boltzmann limit aboveTc. The pressure and energy density corrections due to the non-zero

Figure 5: Some Taylor coefficients in the pressure expansion for themud ≈ 0.1ms, Nt = 4 trajectory.

chemical potential are shown in Figure 6.

6. Conclusions

We have calculated the EOS along two constant physics trajectories withmud ≈ 0.1ms and
0.2ms using the R algorithm. To estimate the finite step-size errors we have performed a number
of additional R algorithm simulations at different step-sizes and a few RHMC simulations along
the constant physics trajectories. The analysis of this additional data shows that the finite step-size
errors are negligible on themud ≈ 0.2ms trajectory and small (in most cases less a than few percent)
on themud ≈ 0.1ms trajectory.
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Figure 6: Pressure correction∆p= p(µl )− p(µl = 0) and energy density correction∆ε = ε(µl )−ε(µl = 0)

for themud ≈ 0.1ms, Nt = 4 trajectory toO(µ4) and atµh = 0.

We have started a non-zero chemical potential study of the EOS with 2+1 flavors using the
Bielefeld–Swansea Taylor expansion method and presented preliminary EOS results for a number
of different µ̄l /T values.
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