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Polyakov loop correlations at finite temperature in two-flavor QCD are studied in lattice simu-

lations with the RG-improved gluon action and the clover-improved Wilson quark action. From

the simulations on a163×4 lattice , we extract the free energies, the effective running coupling

geff(T) and the Debye screening massmD(T) for various color channels of heavy quark−quark

and quark−anti-quark pairs above the critical temperature. The free energies are well approxi-

mated by the screened Coulomb form with the appropriate Casimir factors. The magnitude and

the temperature dependence of the Debye mass are compared to those of the next-to-leading order

thermal perturbation theory and to a phenomenological formula given in terms ofgeff(T). Also

we made a comparison between our results with the Wilson quark and those with the staggered

quark previously reported.
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1. Introduction

The interaction between heavy quarks in a hot QCD medium is one of the most important
quantities to characterize the properties of the quark-gluon plasma (QGP). Experimentally, it is
related to the fate of the charmoniums and bottomoniums in the QGP created in relativistic heavy
ion collisions. In this report, we present our recent studies on the heavy-quark free energy in
dynamical simulations of two-flavor QCD with the Wilson fermion. We study the free energy of
a quark (Q) and an antiquark (Q) separated by the spatial distancer in the color singlet and octet
channels, and also study the free energy ofQ andQ in the color anti-triplet and sextet channels. We
adopt the Coulomb gauge fixing for the gauge-non-singlet free energies. By fitting the numerical
results with the screened Coulomb form, we extract an effective running coupling and the Debye
screening mass in each channel as a function of temperature.

We find that (i) the free energies in the different channels at high temperature (T >∼ 2Tc) can
be well described by the channel-dependent Casimir factor together with the channel-independent
running couplinggeff(T) and the Debye massmD(T), (ii) the next-to-leading order result of the
Debye mass in thermal perturbation gives better agreement withmD(T) on the lattice than that
of the leading order, (iii)geff(T) andmD(T) may be related through the leading order formula,
mD(T) =

√
1+Nf /6 geff(T)T, so that most of the higher order and non-perturbative effects on the

Debye mass may be absorbed ingeff(T) for T > 1.5Tc, and (iv) there is a quantitative discrepancy
of mD(T) between our results using the Wilson quark and those using the staggered quark even at
T ∼ 4Tc.

2. Lattice action and simulation parameters

We employ the renormalization group improved gluon action and clover improved Wilson
quark action with two-flavors. The line of constant physics, on which the quark mass (or the ratio
of pseudo-scalar and vector meson masses) is kept fixed in the space of the couplingβ and the
hopping parameterK, has been studied in refs. [1] using the same action and is discussed further
in ref. [2]. We perform the simulations on the lines of constant physics for the quark masses
corresponding tomπ/mρ = 0.65 and 0.80. Ten (seven) different temperatures are taken in the
interval T = 1.00Tc ∼ 4.02Tc for mπ/mρ = 0.65 (T = 1.07Tc ∼ 3.01Tc for mπ/mρ = 0.80) on a
Ns×Nt = 163×4 lattice. The hybrid Monte Carlo algorithm is employed to generate full QCD
configurations, and the free energy in each color channel is measured using 500 configurations
at every ten trajectories after thermalization of 400-1000 trajectories. The statistical errors are
determined by a jackknife method with the bin-size of 10 configurations.

3. Heavy quark free energies

The free energy of static quarks on a lattice may be described by the correlations of the
Polyakov loop: Ω(x) = ∏Nt

τ=1U4(τ,x) whereNt is a lattice size in the temporal direction, and
theUµ(τ,x) ∈ SU(3) is the link variable. By appropriate gauge fixing (such as the Coulomb gauge
fixing), one can define the free energy in various color channels separately [3]: the color singletQQ
channel (1), the color octetQQ channel (8), the color anti-tripletQQ channel (3∗), and the color
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Figure 1: Simulation results of the normalized free energies scaled byTc for color singlet and octetQQ
channels (left) and color anti-triplet and sextetQQ channels (right) atmπ/mρ = 0.65 and several tempera-
tures.

sextetQQchannel (6) :

e−F1(r,T)/T =
1
3
〈TrΩ†(x)Ω(y)〉, (3.1)

e−F8(r,T)/T =
1
8
〈TrΩ†(x)TrΩ(y)〉− 1

24
〈TrΩ†(x)Ω(y)〉, (3.2)

e−F6(r,T)/T =
1
12
〈TrΩ(x)TrΩ(y)〉+ 1

12
〈TrΩ(x)Ω(y)〉, (3.3)

e−F3∗ (r,T)/T =
1
6
〈TrΩ(x)TrΩ(y)〉− 1

6
〈TrΩ(x)Ω(y)〉, (3.4)

wherer = |x−y|.
We introduce normalized free energies(V1,V8,V6,V3∗) which are expected to approach zero at

large distances aboveTc. This is equivalent to defining the free energies by dividing the right-hand
sides of Eq. (3.1) – (3.4) by 〈TrΩ〉2.

The normalized free energies are shown in Fig.1 for color singlet and octetQQ channels
(left) and color anti-triplet and sextetQQ channels (right) formπ/mρ = 0.65 andT ≥ Tc. They
are “attractive” in the color singlet and anti-triplet channels and “repulsive” in the color octet and
sextet channels. Also they become weak at long distances asT increases due to the effect of Debye
screening. These behaviors are qualitatively similar to the case in the quenched simulations with
the Lorenz gauge reported in ref. [4].

To study the screening effects in each color channel more closely, we fit the free energies by
the screened Coulomb form:

VM(r,T) = C(M)
αeff(T)

r
e−mD(T)r , (3.5)

whereαeff(T) andmD(T) are the effective running coupling and Debye screening mass, respec-
tively. TheC(M)≡ 〈∑8

a=1 ta
1 · ta

2〉M is the Casimir factor for each color channel (M) defined as

C(1) =−4
3
, C(3∗) =−2

3
, C(8) =

1
6
, C(6) =

1
3
. (3.6)
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Figure 2: The effective running couplingαeff(T) (left) and Debye screening massmD(T) (right) for each
color channel as a function of temperature from the large distance behavior of the potentials atmπ/mρ =
0.65.

Here, it is worth stressing that, with the improved actions we adopt, the rotational symmetry is
well restored in the heavy quark free energies [5]. Therefore we do not need to introduce terms
correcting lattice artifacts at short distances in eq. (3.5) to fit the data shown in Fig.1.

The Debye screening effect is defined through the long distance behavior ofVM(r,T). In
order to determine the appropriate fit range, we estimate the effective Debye mass from a ratio of
normalized free energies:

mD(T; r) =
1

∆r
log

VM(r)
VM(r +∆r)

− 1
∆r

log

[
1+

∆r
r

]
. (3.7)

Investigating the plateau ofmD(T; r), we choose the fit range to be
√

11/4≤ rT ≤ 1.5. Systematic
errors due to the difference of the fit range are about 10% forT >∼ 2Tc.

The results of theαeff(T) andmD(T) are shown in Fig.2 for mπ/mρ = 0.65. Similar behavior
in both results are obtained formπ/mρ = 0.80. We find that there is no significant channel depen-
dence ofαeff(T) andmD(T) at sufficiently high temperature(T >∼ 2Tc). In other words, the channel
dependence of the free energy at high temperature may be well absorbed in the kinematical Casimir
factor as first indicated in a quenched study [4].

4. Debye mass on the lattice and that in perturbative theory

Let us first compare the Debye mass on the lattice with that calculated in thermal perturbation
theory. First of all, the 2-loop running coupling is given by

g−2
2l (µ) = β0 ln

(
µ

ΛMS

)2

+
β1

β0
ln ln

(
µ

ΛMS

)2

, (4.1)

where the argument in the logarithms may be written asµ/ΛMS = (µ/T)(T/Tc)(Tc/ΛMS) where

we adoptTc/Λnf =2

MS
' 0.656for the last factor [1, 6]. The renormalization pointµ is assume to be

in a rangeµ = πT −3πT. By usingg2l as a function ofT/Tc, the Debye screening mass in the
leading-order (LO) thermal perturbation is given asmLO

D (T)/T =
√

1+Nf /6 g2l(T), where the
effect of the quark mass is neglected.
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Figure 3: The Debye screening massesmD(T) at mπ/mρ = 0.65 and 0.80 in the color singlet channel
together with that calculated in the leading-order (left) and next-to-leading-order (right) thermal perturbation
theory shown by the dashed lines.µ is the renormalization point chosen atµ = πT, 2πT, 3πT.

Figure 3(left) shows themD(T) in the color singlet channel compared withmLO
D (T)/T for

µ = πT, 2πT and3πT. We find that the screening massmLO
D (T) in the leading order perturbation

theory does not reproduce the lattice data, which has been known in the quenched QCD [7] and in
the full QCD with the staggered quark [8] .

To study higher-order contributions in the thermal perturbation theory, we consider the Debye
mass in the next-to-leading-order calculated by the hard thermal resummation given in ref. [9].

mNLO
D

T
=

√
1+

Nf

6
g2l(T)

[
1+g2l(T)

3
2π

√
1

1+Nf /6

(
ln

2mLO
D

mmag
− 1

2

)
+o(g2)

]
. (4.2)

Heremmag denotes the magnetic screening mass assumed to be of the formmmag(T) = Cmg2(T)T.
Since the factorCm cannot be determined in the perturbation theory due to the infrared problem,
we adoptCm' 0.482calculated in quenched lattice simulations [7] as a typical value. ( If we fitCm

from our lattice datamD(T = 4.02Tc) with µ = 2πT, we obtainCm' 0.40). mNLO
D (T) for different

choice of the renormalization point is shown in Fig.3(right) by the dashed lines together with the
lattice data. They have approximately 50 % enhancement from the leading order results and lead
to a better agreement with the lattice data.

5. Phenomenological relation betweenαeff and mD

So far, we have fitted the free energies on the lattice withαeff andmD as independent parame-
ters. Here let us introduce an “effective” running coupling asgeff(T)≡

√
4παeff(T). Suppose that

mD(T) is expressed bygeff(T) according to the leading-order perturbation,

mD(T)
T

=

√
1+

Nf

6
geff(T). (5.1)

This relation means that the following ratioR evaluated from our lattice data should be close to
unity, i.e.R(T)≡ (1+Nf /6)−1/2 (mD(T)/T)/

√
4παeff(T)∼ 1.
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Figure 4: The ratioR(T) in the text which is supposed to be close to unity ifmD(T) =
√

1+Nf /6 geff(T)T
holds. The data are for the color singlet channel.

In Fig. 4, the lattice data ofR(T) for the singlet channel are shown as a function ofT. We
find thatR(T) is consistent with unity even atT >∼ 1.5Tc with 10% accuracy. This is a non-trivial
observation particularly nearTc and suggests that the major part of the higher-order effects and
non-perturbative effects ofmD(T) can be expressed by the effective running couplinggeff(T). We
note that a similar effective coupling defined through the lattice potential was discussed to improve
the lattice perturbation theory atT = 0 [10].

6. Comparison with the staggered quark

Finally, we compare the results ofαeff(T) andmD(T) obtained with the Wilson quark action
(present work) with those with an improved staggered quark action. The latter simulation was
done on a163×4 and with a quark mass corresponding tomπ/mρ ' 0.70 [8]. The comparison
is shown in Fig.5 for αeff(T) (left panel) andmD(T)(right panel). Althoughαeff(T) does not
show significant difference between the two actions,mD(T) in the Wilson action is systematically
higher than that of the staggered action by about 20% even at4Tc. This difference should be further
investigated by increasing the temporal lattice size.

7. Summary

We have studied the free energy ofQQandQQ systems in 2-flavor QCD at finite temperature
using the lattice simulation with the renormalization group improved gluon action and the clover
improved Wilson quark action on a163×4 lattice. The free energy normalized to be zero at large
separation show attraction (repulsion) in the color singlet and anti-triplet channels (color octet and
sextet channels).

The screened Coulomb form with the Casimir factor and with the effective couplingαeff(T)
and the Debye screening massmD(T) as free parameters is used to fit the free energy in each
channel.αeff(T) andmD(T) become universal and all the channel dependence is absorbed in the
Casimir factor forT >∼ 2Tc. The magnitude and theT-dependence of the Debye massmD(T)
is consistent with the next-to-leading order calculation in the perturbation theory as well as the
leading order perturbation with the “effective” running coupling.
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Figure 5: Comparison of theαeff(T)(left) andmD(T)(right) between the results of the Wilson quark action
and staggered quark action.

The results from an improved Wilson quark action are compared with these from an improved
staggered quark action with the same lattice size and similar quark mass. Theαeff(T) does not show
appreciable difference between the two actions, whereas themD(T) of the Wilson quark action is
systematically higher than that of the staggered quark action by 20%. The simulations with larger
lattice sizes especially in the temporal direction (such asNt = 6 and larger) should be carried out
as well as those at small quark masses.
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