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1. Introduction

Since the work of Banks and Casher [1] it has been known that the low eigenvalues of the
QCD Dirac operator are related to the breaking of chiral symmetry. Later Leutwyler and Smilga
[2] showed that the low energy partition function for QCD wasuniversal and could be determined
directly from the finite volume chiral Lagrangian. This led to a set of sum rules for inverse powers
of the Dirac eigenvalues. Shuryak and Verbaarschot [3] thendiscovered that these sum rules could
also be obtained from a Random Matrix Theory (RMT) based on chiral symmetry. Thus the low
eigenvalue spectrum of the RMT is also universal and agrees with QCD. By now this agreement
has been extensively checked by lattice simulations.

Since the RMT results contain an explicit volume dependenceone use for them has been
to extract infinite volume results from finite volume latticesimulations. This was first done for
the chiral condensate [4] since that was the only available parameter in the RMT. Since then it
was realized that the low energy partition function of quenched QCD with a chemical potential
also depends on the pion decay constant as does the eigenvalues [5]. The determination of exact
results for the low eigenvalue distributions of quenched QCD with a chemical potential [6] has then
provided one way to extract both constants in quenched lattice simulations [7]. The eigenvalue
distributions for unquenched QCD are also know [8], but due to the complex action they are not
practical for current simulations. One alternative that has been suggested is to use an imaginary
isospin chemical potential [9]. Then the action is real and also a Hermitian eigensolver can still be
used. However for the unquenched simulations this requiredgenerating lattices with an imaginary
isospin chemical potential which, although it does not cause any complications, it is not generally
done.

The ideal case is to consider partially quenched ensembles where the dynamical simulation
is performed at one chemical potential (preferably zero) and the eigenvalues are extracted using a
different (nonzero) chemical potential. We thus consider observables of the form

〈O〉 =
1
Z

∫

d[A] O(/D(µ0)) e−Sg(A)
N f

∏
f=1

det[/D(µ f )+ m f ] (1.1)

whereSg is the gauge action and/D(µ) is the Dirac operator with quark chemical potentialµ . If the
observable only depends on the low energy (zero momentum) modes then the results are universal
and can be evaluated using a chiral effective theory such as RMT. The observables we consider
here are correlations of the Dirac eigenvalues so that

O(X) = ∑
k

δ 2(z1−λk(X))

{

∑
ℓ

δ 2(z2−λℓ(X)) . . .

}

(1.2)

with λk(X) the complex eigenvalues ofX . Partially quenched eigenvalue correlations with an imag-
inary isospin chemical potential have recently been published [10] and details of the calculation for
a real chemical potential will appear elsewhere [11]. Here we present some details on the RMT
used along with a sample of the results.
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2. Dirac eigenvalues from partially quenched partition functions

One way to calculate correlations of Dirac eigenvalues is from the partially quenched partition
functions

ZN f ,Nb({m f |mb},{µ f |µb}) =

∫

d[A]e−Sg(A) ∏N f

f=1 det[/D(µ f )+ m f ]

∏N f +Nb

b=N f +1det[/D(µb)+ mb]
. (2.1)

The partially quenched eigenvalue density for one dynamical flavor, for example, is given by [12]

ρ1(z,µ0|m1,µ1) =

[

1
π

∂z̄∂zZ3,2({m1,z, z̄|mb,m̄b},{µ1,µ0,−µ0|µb,−µb})
]

mb=z,m̄b=z̄,µb=µ0

.(2.2)

The presence of the extra (conjugate) flavors with negativeµ is required when the eigenvalue
spectrum of the Dirac operator is complex. The necessary partition functions can then in principle
be obtained from zero momentum chiral Lagrangians, howeverthese are only known for certain
cases. The purely fermionic partition function is given by [5]

ZN f ,0 =

∫

U(N f )
dU det(U)ν exp

(

1
2

ΣVTrM{U +U†}− 1
4

F2V Tr[U,Q][U†,Q]

)

(2.3)

whereΣ andF are the tree level condensate and pion decay constant andM andQ are diagonal
matrices ofm f andµ f respectively. The bosonic partition functionZ0,2 is also known [6]. So far
no direct evaluation of a partially quenched chiral Lagrangian has been performed. Instead the
partially quenched partition functions can now be evaluated from RMT.

3. RMT for QCD with a chemical potential

Here we will consider a variant of the RMT introduced in [8]. The Dirac matrix in a chiral
basis is written as (for zero mass)

D f =

(

0 ia f Φ+ b f Θ
ia f Φ† + b f Θ† 0

)

. (3.1)

HereΦ andΘ are complex(N + ν)×N matrices withν the topological charge. We start with a
more general form of the Dirac matrix wherea f ≡ a(T,µ f ) andb f ≡ b(T,µ f ) are functions of the
temperature and chemical potentials that we will determinenext. The QCD partition function with
N f quark flavors can now be modeled as

Z =

∫

dΦ dΘ exp
(

−αNTr
[

Φ†Φ+ Θ†Θ
])

N f

∏
f=1

det(D f + m f ) . (3.2)

The constantα sets the average eigenvalue spacing and will also be determined next. We could
absorb it intoa and b, but instead will choose a normalization such thata(T,µ = 0) = 1 and
b(T,µ = 0) = 0.
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The coefficients can be determined by comparing to the chiralLagrangian at nonzeroµ . The
mapping follows very closely to that forµ = 0 given in [13]. First the fermion determinants are all
written in terms of Grassmann variables as

det(D f + m f ) =

∫

dψ̄ f
1,2dψ f

1,2 exp

[

m f ∑
k

ψ̄ f
k ψ f

k + ψ̄ f
1 (ia f Φ+ b f Θ)ψ f

2 + ψ̄ f
2 (ia f Φ† + b f Θ†)ψ f

1

]

.(3.3)

Then the Gaussian integration over the matricesΦ andΘ can be performed. The result is

Z ∝
∫

∏
f

dψ̄ f
1,2dψ f

1,2 exp

[

m f ∑
k

ψ̄ f
k ψ f

k +∑
g

a f ag −b f bg

αN
ψ̄ f

1 ψg
1ψ̄g

2ψ f
2

]

. (3.4)

If we consider only a baryon chemical potential such that allflavors have the same chemical po-
tential µ f = µB, the coefficient of the four fermion term becomes[a2(T,µB)−b2(T,µB)]/αN. At
zero temperature we expect that the partition function doesnot depend on the baryon chemical po-
tential. We can ensure this in the RMT by settinga2(0,µ)−b2(0,µ) = 1. For nonzero temperature
this will not be the case and one can leave the functionsa andb independent. As was mentioned
previously [14], this could possibly be used to help map out the QCD phase diagram.

A nonlinear sigma model is obtained by using a Hubbard-Stratonovitch transformation to
break apart the four fermion terms and then integrate out theGrassmann variables. This gives

Z =
∫

dσ e−αNTrσ†σ det(σ + M)N+ν det(σ† + P+ M)N (3.5)

with σ a N f ×N f complex matrix andP = Aσ†A−Bσ†B−σ† such thatP = 0 atµ f = 0. We also
defineA, B andM to be the diagonal matrices ofa f , b f andm f respectively. For smallm f andµ f

the determinants can be expanded as

det(σ + M)N+ν det(σ† + P+ M)N ≈ exp
(

NTr
[

ln(σ†σ)+ Mσ−1+(M + P)σ†−1]) . (3.6)

At T = 0 we can also use the relationA2−B2 = 1 to expandA asA ≈ 1+ B2/2 which we will use
below. Form f = 0 andµ f = 0 the largeN saddle point is given byσ†σ = 1/α . Thus the Goldstone
manifold is simply the unitary group [13]. The low energy partition function is then

∫

dU det(U)ν exp
(

NTr
√

αM{U +U†}−NTr[U,B][U†,B]
)

. (3.7)

By matching terms with (2.3) we find that

√
α ≈ ΣV

2N

b(T = 0,µ) ≈ µF

√

V
2N

a(T = 0,µ) ≈ 1+ µ2F2 V
4N

. (3.8)

With these definitions we then have a RMT that maps directly onto the zero momentum chiral
Lagrangian. We note that theO(µ2) term ina above only contributes to the overall normalization
of the partition function. We can therefore neglect it for most observables. However quantities like
the partition function, particle number and related susceptibilities will depend on it.
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Figure 1: Real part of the one flavor eigenvalue density for dynamical massm = 0 at different chemical
potentialsµ . The peaks have been clipped for better illustration atµF

√
V = 2,4.

4. Partially quenched eigenvalue correlations

A nice feature of the above RMT is that the partition functioncan be rewritten directly in
terms of the eigenvalues of the Dirac matrix (3.1). This was originally done for the unquenched
model where the dynamical and valence chemical potentials are all the same [8]. It is also possible
to do this for the partially quenched case, although the results become much more complicated.
Due to space constraints we will only show plots of some of theresults and save the details of the
calculation for a future publication [11].

As a review we first show results for the one flavor eigenvalue density [8, 15]. In figure 1
we plot the real part of the density for dynamical massm = 0 for different values of the common
chemical potentialµ . At µ = 0 the eigenvalues are purely imaginary. For smallµ they begin to
spread out into the complex plane, but still show the characteristic oscillations along the imaginary
axis due to chiral symmetry. For largerµ those oscillations disappear and a new set of oscilla-
tions appear around the real axis. These oscillations grow exponentially with the volume and also
change sign unlike the ones for smallµ . They are not seen in the quenched density and are in turn
responsible for producing a nonzero chiral condensate [16].

We now start with the one flavor density atµF
√

V = 2 and lower the dynamical chemical
potentialµ1 as the valence chemical is held fixed atµ0 = µ . This is show in figure 2. The peak
that is seen near the real axis (which is clipped atµ1F

√
V = 1.9) stays at about the same height

as µ1 varies. However the background density increases filling inthe valley along the real axis
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Figure 2: Real part of the partially quenched eigenvalue density for valence chemical potentialµ0F
√

V = 2
with dynamical massm1 = 0 and different dynamical chemical potentialsµ1. The peak has been clipped for
better illustration atµ1F

√
V = 1.9.

until the oscillations are completely covered atµ1 = 0. At this point the density looks more like
the quenched density shown in figure 3 than the one flavor result. The main differences between
the quenched and partially quenched in this case are the overall scale and the relative size of the
“bump” along the real axis.

We can also extend these results to a complex chemical potential including a purely imaginary
one. This could be used to test analytic continuation of quantities from imaginary to real chemical
potentials. An imaginary chemical potential can also be used for fitting the low energy constants
Σ andF. However in this case it is better to consider the mixed eigenvalue correlation between a
valence and dynamical eigenvalue [9, 10], since it is much more sensitive to the chemical potential.

5. Conclusions

We have shown results for the eigenvalue correlations of partially quenched QCD with differ-
ent dynamical and valence chemical potentials. This could be useful for fitting low energy constants
on existing lattices generated at zero chemical potential.It is also possible to generate the low en-
ergy partition functions with different chemical potentials for each flavor from these results. This
could then be applied, for example, to study three flavor QCD.Additionally the extension of the
RMT to include coefficients which are general functions of temperature and chemical potential
may be useful for mapping out the QCD phase diagram.
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Figure 3: Partially quenched (left) and quenched (right) eigenvaluedensity for valence chemical potential
µ0F

√
V = 2. The dynamical chemical potential for the partially quenched isµ1 = 0 with dynamical mass

m1 = 0. Note the different scales.
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