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in two-flavor QCD. The focus of the present work is twofold. First, the systematic uncertainties

present in the data from past numerical simulations are checked against new Monte Carlo data

generated using an exact RHMC algorithm. No significant deviations from old data are observed,
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MC simulations.
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1. Introduction

The nature of the finite temperature transition in QCD with two light mass degenerate fermions
has been the subject of a considerable number of investigations in the literature [1, 2, 3, 4, 5, 6, 7].
Nonetheless a clarifying and definitive study on this subject do not seem to be yet viable, mostly due
to the subtle nature of the system and the huge computing power required to simulate dynamical
fermions in the chiral limit.

In the present contribution we report on the progress made in trying to improve our analysis
in [7]. This improvement is twofold: we eliminate some sources of systematic errors and we make
a direct check of the hypothesis that the transition is first order.

2. Previous analysis

In this section some basic facts on the chiral transition in N f = 2 QCD and our strategy of
analysis presented in [7] are briefly recalled.

The first prediction on the order of the chiral transition in QCD with N f flavors of mass de-
generate quarks goes back to 1984 and it is due to Pisarski and Wilczek [8]. By using the idea of
universality of critical systems undergoing a second order phase transition they studied the simplest
effective model with the same symmetry and symmetry breaking pattern of QCD looking for IR
stable fixed point of the RG flow corresponding to possible second order universality classes. We
summarize in Table 1 their findings for the chiral transition mq = 0. The presence or absence of
the axial U(1) anomaly at the critical temperature is important in this analysis because it changes
the symmetry of the system. For the case N f = 2 the transition at mq = 0 can be first order or
second order in the universality class of O(4) but only if the anomaly is still present at Tc. When
massive quarks are persent, they can be included in the effective model as an external magnetic
field with strength proportional to the mass of the quarks. Thus the prediction in this case mq > 0
is a crossover if the transition were second order at mq = 0 or it remains a first order transition for
sufficiently small quark masses.

Inspired by this seminal paper, many investigation on the lattice were made [1, 2, 3, 4, 5, 6].
A general tendency towards the claim that the transition was second order emerged, although no
conclusive evidence in favor of O(4) was found. In [7] we addressed the question whether the
transition is second order O(4) or not using a novel strategy. The idea was the following. The
critical behavior of a system is described by the singular part of the free energy density Fs, which
is a function of the scaling variables

Fs(τ,mL,Ls) = L−d
s F

′
s (τLyt

s ,mLLyh
s ) (2.1)

where the relevant quantities are the reduced temperature τ , the quark mass mL and the system size
Ls. Eq. 2.1 gives the scaling law for the free energy density from which the singular behavior of all
other thermodynamic quantities can be derived. It is important to notice that F ′

s depends on the rel-
evant quantities only in certain combinations fixed by the critical exponents yt and yh. In principle
starting form Eq. 2.1 one can study the quality of the scaling and determine the universality class
of the transition, but the presence of two scaling variables makes this procedure unpractical. To test
a given universality class, in [7] we adopted a different strategy: we fixed one of the two scaling
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U(1)A broken U(1)A restored at Tc

N f = 1 first order / crossover first order / O(2)

N f = 2 first order / O(4) first order

N f ≥ 3 first order first order

Table 1: Possible universality classes for the chiral transition mq = 0.
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Figure 1: Test of O(4) scaling of CV (top row) and χm (bottom) for Run1 (left column) and Run2 (right).

variables and studied the dependence on the other. Namely we made a number of measurement
at a fixed value of the quantity mLLyh

s , i.e. we changed mL as a function of Ls in our simulations.
We collected two different set of data, called Run1 and Run2, on lattices with Ls = 12,16,20,32
differing only for the value of the constant mLLyh

s . Since the functional relation between the quark
mass mL and the lattice size Ls depends on the critical exponent yh, one can only test one given
universality class: in [7] we tested O(4), fixing yh = 2.49.

The results of our investigation are shown in Fig. 1 where the quality of the O(4) scaling
is shown for two different thermodynamical susceptibilities: the specific heat CV and the chiral
condensate susceptibility χm. No signal of scaling was observed for both of our datasets which led
to the conclusion that the O(4) universality class is incompatible with the lattice data. Excluding
the second order nature of the transition, the only other possibility is that the transition is first order.
Indeed in [7] some hint of a first order transition was found reusing the data at our’s disposal, but
this required some further assumption on the scaling functions.
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Figure 2: Comparison between MC estimates obtained by the exact RHMC algorithm and the Hybrid-R for
the average value (left column) and susceptibility (right) of the plaquette (top row) and chiral condensate
(bottom) on a lattice with Ls = 16 and mL = 0.01335.

3. Improving the analysis

Some sources of systematic errors are present in [7], which in principle can influence the
results. The main problems are: 1) the use of a non-exact MC algorithm; 2) no explicit test of
a first order phase transition was made; 3) the lattice temporal extent used was Lt = 4. To solve
problem 3) the use of finer lattices is needed and/or the use of improved actions. In this work a
preliminary attempt is made to address the first two problems.

3.1 Hyb-R vs RHMC

The dataset collected in [7] were generated using the Hybrid-R algorithm which is known to
have systematic errors due to the presence of a non-zero integration step in the molecular dynamics
evolution of the fields. Although care was used to reduce this systematic effect to a minimum
compatibly with computational costs, one can wonder how our results are affected by this error.
In the following to address this question we perform a comparison of a subset of our dataset used
in [7] with new MC data obtained using the exact RHMC algorithm. The subset was chosen to
be those MC simulations with the lowest quark mass value mL = 0.01335 where the effects of the
discretization error are expected to be more sensitive. The comparison is shown in Fig. 2 for a
lattice with Ls = 16 and in Fig. 3 for Ls = 32 where we plot the average and susceptibility of both
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Figure 3: The same comparison as in Fig. 2 on a lattice with Ls = 32 and mL = 0.01335.

the plaquette and the chiral condensate. In all the cases the systematic effects are comparable with
our statistical errors, except for a point far from the transition temperature on the larger lattice. We
can safely conclude that this systematic error were under control in the critical region of interest
and thus the claim that O(4) scaling is incompatible with lattice data remains unchanged.

3.2 Explicit test of first order scaling

The dataset used in [7] was generated to test the O(4) universality class using a value of
the magnetic critical exponent of yh = 2.49 and it was suitable to test first order according to the
strategy explained in Sect. 2. Here we repeat the whole analysis assuming first order from the
start, i.e. using the value yh = 3 for the effective critical exponent. This means that a new set of
MC simulations, called Run3 in the following, must be performed at different values of matching
mL, Ls. In the following a preliminary analysis is presented using two different lattice sizes of
Ls = 16,32. The value of mL for the lattice with Ls = 32 was chosen to be mL = 0.01335, i.e.
the same as for Run1, so that old data can be reused. A new set of MC simulations was made
for Ls = 16 at mL = 0.1068, which is shown in Fig. 4 where raw data point and the reweighting
confidence region is shown for the average and susceptibility of both the plaquette and the chiral
condensate.

Comparing the two matching lattice data we can esteem the quality of the first order scaling,
shown in Fig. 5. The scaling is good for the specific heat CV as the two curves collapse on each
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Figure 4: MC data obtained using the RHMC algorithm on a lattice with Ls = 16 and mL = 0.1068 (Run3).
Plaquette related quantities are shown in the first row; the ones related to the chiral condensate in the second.
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Figure 5: Test of first order scaling (Run3). Specific heat scaling is shown on the left; χm scaling on the
right.

other within errors around the critical temperature. However for the susceptibility of the chiral
condensate χm this is not the case. This may be due to the high value of the quark mass for the
smaller lattice but further investigation is needed to understand the issue.
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4. Conclusions

We have addressed two main sources of systematic errors which were present in our analy-
sis [7] on the nature of the chiral transition in N f = 2 QCD.

The first one is related to the use of the non-exact Hybrid-R algorithm. We have made a
direct comparison between the old MC data with new simulations made using the exact RHMC
algorithm and we have found that the systematic errors were comparable with the statistical ones
and thus under control. The results found in [7] remain valid.

The second one is a direct check of the first order nature of the transition. Following the same
strategy developed in [7], a preliminary analysis have been made using two matching lattices of
size Ls = 16,32 with the same value of the scaling variable mLLyh

s with yh = 3. While the specific
heat shows a good scaling, the susceptibility χm does not, probably due to the large value of the
quark mass mL = 0.1068 corresponding to Ls = 16.

This work was done using the INFN APEmille machines in Pisa and the apeNEXT facility in
Rome.
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