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We consider 3-flavour lattice QCD with a finite chemical potential µI for isospin, close to the

finite temperature transition from hadronic matter to a quark-gluon plasma. In this region one

can argue that the position and probably the nature of this transition mimic those at finite quark-

number chemical potential µ . The quark mass is chosen to be close to the critical mass at zero

chemical potentials. Since the Binder cumulants used to determine the nature of this transition

in HMD(R) simulations are very sensitive to the updating increment dt, we have switched to the

newer exact RHMC algorithm for our simulations. Preliminary results indicate that there is no

critical endpoint in the small µI regime, at least none connected with the critical point at zero

chemical potentials.
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1. Introduction

Direct simulations of QCD at finite baryon/quark number density are made difficult if not im-
possible because at finite quark-number chemical potential µ the fermion determinant is complex.
At small chemical potentials, close to the finite temperature transition, various methods have been
devised to circumvent this difficulty, series expansions in µ [1, 2, 3], analytic continuation from
imaginary µ [4, 5, 6, 7, 8, 9], reweighting methods [10, 11] and canonical ensemble techniques
[12, 13].

We adopt a different strategy, and simulate using the magnitude of the fermion determinant and
ignoring the phase [14, 15]. This can be thought of as considering all quarks to be in isodoublets
and introducing a finite chemical potential µI for isospin. In the region of small µ/µI , where the
phase is expected to be less important one can argue that the finite µ and µI transitions might be
identical. Since our fermion determinant is positive (or at least non-negative), we can use standard
hybrid molecular-dynamics HMD(R) simulations [16]. However, for this algorithm, the Binder
cumulants used to determine the nature of the finite temperature transition turn out to be strongly
dependent on the updating increment dt. For this reason we now simulate using the rational hybrid
monte-carlo (RHMC) algorithm [17, 18], which is exact in the sense of having no dt dependence
for observables.

In the low chemical potential domain, the most interesting feature expected in the phase dia-
gram is the critical endpoint, where the finite temperature transition changes from a crossover to a
first-order transition as chemical potential is increased. The critical endpoint is expected to lie in
the universality class of the 3-dimensional Ising model. For 3 flavours it had been expected that
the critical point at zero chemical potentials, where the transition changes from a first order tran-
sition to a crossover as mass is increased, would move to higher masses as the chemical potential
increases, thereby becoming the critical endpoint. Our preliminary results indicate that this does
not happen.

In section 2 we give the fermion action and make a few comments on the RHMC implemen-
tation. Section 3 gives our preliminary results. Our conclusions occupy section 4.

2. QCD at finite isospin density and the RHMC

The pseudo-fermion action for QCD at finite µI , used for the implementation of the RHMC
algorithm is

Sp f = p†
ψM

−N f /8 pψ (2.1)

where pψ is the momentum conjugate to the pseudo-fermion field ψ .

M = [D/(
1
2

µI)+m]†[D/(
1
2

µI)+m]+λ 2 (2.2)

is the quadratic Dirac operator, and we set λ = 0 for our µI < mπ simulations.
To implement the RHMC method we need to know positive upper and lower bounds to the

spectrum of M . 25 exceeds the upper bound for the µI range of interest. We use a speculative
lower bound of 10−4 since the actual lower bound of the spectrum is unknown. This is justified
by varying the choice of lower bounds and comparing the results [19]. For N f = 3 we use a
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(20,20) rational approximation to M (±3/16) at the ends of each trajectory, and a (10,10) rational
approximation to M (−3/8) for the updating.

3. Simulations and Results

We are simulating lattice QCD with staggered fermions and N f = 3 at quark masses close to
mc, the critical mass for µ = µI = 0 on 83 ×4, 123 ×4 and 163 ×4 lattices. m = 0.02, 0.025, 0.03,
0.035, and µI = 0.0, 0.2, 0.3. For our 123 × 4 simulations we use runs of 300,000 trajectories at
each of 4 β values close to βc, for each m and µI . We mostly use dt = 0.05 for which length-1
trajectories give acceptances of ∼ 70% for the RHMC algorithm.

To determine the nature of the transition, we use 4-th order Binder cumulants [20] for the
chiral condensate. For any observable X this cumulant is defined by

B4(X) =
〈(X −〈X〉)4〉

〈(X −〈X〉)2〉2 (3.1)

where the Xs are lattice averaged quantities. For infinite volumes, B4 = 3 for a crossover, B4 = 1
for a first-order transition and B4 = 1.604(1) for the 3-dimensional Ising model. Thus, if there is a
critical endpoint we would expect B4 to decrease with increasing µI , passing through a value close
to the Ising value at the critical µI .

Figure 1: Binder cumulant at T = Tc as a function of mass at µI = µ = 0.

Figure 1 shows our preliminary measurements of the Binder cumulant for the chiral condensate
as a function of mass at µI = µ = 0 from our 123 × 4 simulations. Taking the point where the
straight-line fit passes through the Ising value as our estimate for the critical mass yields mc =
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0.0264(3). Each of the points in this graph were obtained by averaging the Binder cumulants
taken from several β values close to the transition, and extrapolated to βc which minimizes these
cumulants, using Ferrenberg-Swendsen rewieghting [21].

Figure 2: Binder cumulant at T = Tc as a function of µ2
I at m = 0.03.

The µI dependence of this Binder cumulant at βc(µI) is shown in figure 2, for m = 0.03, a little
above mc. It is clear that, rather than decreasing with increasing µI , it actually increases slowly.
Since βc and hence Tc decrease with increasing µI , in physical units m is actually decreasing with
increasing µI meaning that at fixed physical m the rise would be even more pronounced. The
behaviour at m = 0.035 is very similar.

Figure 3 shows the dependence of the transition β , βc, on µI . As mentioned above, βc and
hence the transition temperature Tc fall (slowly) with increasing µI as expected. The fits shown to
this preliminary ‘data’ are:

βc = 5.15326(10)−0.173(2)µ2
I m = 0.035

βc = 5.14386( 8)−0.172(1)µ2
I m = 0.030

βc = 5.13426(12)−0.179(4)µ2
I m = 0.025

(3.2)

which is in reasonable agreement with the results of de Forcrand and Philipsen for the µ depen-
dence of the transition temperature, obtained from analytic continuation from imaginary µ if we
make the identification µI = 2µ .

Figure 4 shows the dt dependence of the Binder cumulants at the transition for m = 0.035,
µI = 0.2 in the HMD(R) simulations. The exact RHMC result, which has no dt dependence, is
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Figure 3: βc as functions of µ2
I . From top to bottom, m = 0.035, m = 0.03, m = 0.025, m = 0.02.

plotted on this graph at dt = 0. It is clear that the RHMC result is consistent with the dt → 0
limit of the HMD(R) results. The actual value of dt used in the RHMC simulations was dt = 0.05,
the value of dt for the rightmost point on this graph, showing one advantage of using this new
algorithm.

4. Conclusions

We simulate lattice QCD with 3 flavours of staggered quarks with a small chemical potential
µI < mπ for isospin, in the neighbourhood of the finite temperature transition from hadronic mat-
ter to a quark-gluon plasma. Fourth order Binder cumulants are used to probe the nature of this
transition and search for the critical endpoint for masses slightly above the critical mass for zero
chemical potentials. Earlier simulations using the HMD(R) algorithm were plagued by large finite
dt errors [15]. We now use the RHMC algorithm which is exact in the sense of having no finite dt
errors.

We measure the critical mass to be mc = 0.0264(3) for Nt = 4, in agreement with the recent
results of de Forcrand and Philipsen [5], but considerably below earlier measurements which found
values close to mc = 0.033 [22, 23, 24]. These higher values were due to using the HMD(R)
algorithm with dt large enough to produce large systematic errors.

For masses greater than mc we found that the Binder cumulant for the chiral condensate in-
creases with increasing µI and thus shows no evidence for a critical endpoint, contrary to earlier
expectations. This also agrees with the observations of de Forcrand and Philipsen [5] for finite µ ,
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Figure 4: Binder cumulants for m = 0.035, µI = 0.2 for HMD(R) simulations as a function of dt2 compared
with that from RHMC simulations.

emphasizing the similarities between finite µ and finite µI for small µ ,µI , near the finite tempera-
ture transition. On these relatively small lattices (123 × 4), we really should minimize the Binder
cumulant of linear combinations of the chiral condensate, the plaquette and the isospin density to
obtain the desired eigenfield of the renormalization group equations, to draw reliable conclusions
[22] 1.

We end with the observation that we have used RHMC simulations where we do not know a
positive lower bound for the spectrum of the quadratic Dirac operator. This is done by choosing
a speculative lower bound and justifying our choice a postiori. We refer the reader to our recent
paper on this subject [19].
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