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Field theoretic study of a cold Fermi gas in the unitary limit

1. Introduction

In this talk | present results from studying a dilute gas of 2 species okfativistic fermions
interacting through a short range attraction. The most relevant expdahrealization of this
system is the trapping and cooling of fermionic isotopes of alkali atoms, antibcdivity in many
labs around the world. These atomic gas experiments, and the theory vesictibeés them, can
also be considered to be models of a dilute neutron gas.

The Hamiltonian is the sum of kinetic energy operators and a short rangetiad
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This work is concerned with equal populations of the 2 spedgs; N, = N. We adopt nonrel-
ativistic unitsh = m =1 since the fermion mags, not the speed of light, is the relevant kine-
matic factor relating temporal and spatial units. Realistic potentials are the vavedés potential
v(r) ~ (ro/r)® for atomic gases and the Yukawa potenti@l) ~ exp(—r /ro)/r for a neutron gas.
In either casey is the length scale characteristic of the specific potential.

As we know, low momentum processes do not probe short distancesdso the right con-
ditions, the many body physics is the same for atoms and neutrons. The tymoaéntum
in a fermion gas is the Fermi momentum, defined through the particle demsitiN/V to be
ke = (3r®n)Y/3. Quantitatively then, the details of the potential do not affect the physiesiwh
kero < 1, which we call the dilute regime. The atomic gases are indeed dilute; intelpalige
tances are typically 2-3 orders of magnitude larger thanAlthough realistic neutron matter is
never in the dilute regime — without high densities of about 0.1 Ge\,(ﬁnef, neutrong3-decay
to protons — idealized dilute neutron matter is a valid theoretical limit of realistic orematter
and a warm-up for nuclear matter.

Looking at an effective range expansion of the scattering amplitude,
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(defined through thé& matrix asS= 1+ ike’) we can see that the only relevant parameter is
the S-wave scattering lengthin the dilute regime. (Higher partial waves are negligible at low
energies.) Note we follow the convention is that O corresponds to the 2-body system having no
bound state. With-1 <« kra < 0 the ground state is a Bardeen-Cooper-Schrieffer superfluid, while
at 0< kra < 1 tightly bound difermion molecules are the ground state and form a Boseekins
condensate at low temperatures. Mean field theory provides an acdesatiption in both of these
extremes. The case of particular interest to Ugig| > 1, which happens when a bound state is
close to threshold. Here fluctuations dominate and mean field theory is ofendrugarticular,
when|a| — o, the scattering length is no longer a physical length scale. The only lergthlsit
in the problem isk,;1 (or the interparticle spacing /%), giving universal physics. This is called
the unitary regime.

The atomic physics experiments are pristine, versatile environments to studgpbedence
of many body physics on scattering length. The 2 species of fermions ingje dre 2 hyperfine
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spin states, which react differently to an external magnetic field. By tuniagrthgnetic field to a
Feshbach resonance, the scattering length can be fine-tuned to infinity.

Large scattering lengths arise in nuclear physics as well. Low enerdgramiaucleon scatter-
ing is governed by one-pion exchange, so dimensional analysis wogdgtsuthat the scattering
length should be the same size as the pion Compton wavelengtiml However, in fact then
scattering length is-18.5 fm, and innp-scatteringas = —23.76 fm anda; = 5.42 fm. Thus nature
exhibits an order-of-magnitude of fine tuning. Direct Monte Carlo calcuidtiom lattice QCD of
NN scattering and binding as a function of quark mass is underway and ghiouwddwn how this
fine tuning arises from QCD. The study of the unitary Fermi gas is reldeaniuclear physics in
the dilute,|a] — o, andmy — oo limits.

Recent experiments have cooled atomic gases in the unitary regime to tengxeredar the
superfluid transition[J1[] 2] 9] 4] 5]. For example, striking evidence @intjaed vortices signal
superfluidity in a rotating gas of lithium-¢][6]. Here we discuss the applicatfolechniques
familiar to us at this conference toward this interesting system.

2. Lattice field theory at T¢

Since the details of the realistic potential jn [1.1) are irrelevant for dilutesyage can re-
place it by a local 4-fermion interaction with a tunable bare coeffid@ntThen the discretized
Lagrangian is the same as in the attractive 3-dimensional Hubbard model
1 G
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An attractive interaction corresponds@g < 0. We have introduced an anisotropy relating spatial
and temporal lattice spacingg:= b?/by. An external source for pairing can be included in the
LagrangianJy g+ h.c. Doing so allows one to compute the condengate(y) in finite volume.
The result in the limit oV — «,J — 0 is an order parameter for the spontaneous breaking of
fermion number. Although the infinite volume limit must be taken before O limit, in this work
we assumd is not small enough to see finite volume effects.

In order to integrate out the fermion degrees-of-freedom, an auxilzasfieldg is intro-
duced to complete the square

1
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The result is a partition function which can be expressed as a path inteitiiah nonnegative
integrand:

zzw*@—

7 — /@cpdet[p|2+ RTR] e 2.3)

It has always been known that the attractive Hubbard model has npsiglem, but interest lay in
the repulsive version as a model of superconductivity in electron systeonglilute Fermi gases,
this theory provides a complete effective field theory with a continuum I{fit [7].

The 4-fermion couplin@y can be tuned to obtain any scattering lergthrough
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Figure 1. The order parameter, after extrapolatihg- 0, as a function of anisotropy for 4 values of the
coupling. A rapid change il is apparent between broken (superfluid) and restored (Hpphases.

wherep; = (2/b)sin(pjb/2). The matching is obtained by requiring-2 2 scattering calculated
in the vacuum from[(2] 1) to give the scattering amplitydg (1.2).

A year ago | performed an exploratory Monte Carlo calculation of the critedaperature
separating the superfluid and normal phags [8]. The lattice volume anuiai potential were
fixed to & x 16 andub?/& = 0.4 respectively. As a result the fermion number density was approx-
imately 1 fermion per 4-5 spatial lattice sites. Clearly more dilute calculations amadke to take
the continuum limit. Nevertheless, after extrapolating the external pairingesdu— 0, a clear
jump in the pairing condensate is observed as a function of anisotropynpetature. Figurf] 1
shows the condensate vanishing to zero across the transition as thetd{iprf number symmetry
is restored. The four different curves correspond to four valdeékeobare coupling. Since the
matching condition[(2]4) also includes the anisotrgpyhe physical scattering length is varying in
the critical region, broadened out due to finite volume effects. In ordeot& at fixed scattering
length it may be more convenient to hold bdttandCy fixed and varyu across the transition. A
back-of-the-envelope conversion of the critical region observedirfiFinto a critical temperature
yieldsT;/Te ~ 0.04 around }|a| < 0.5.

In previous work, the attractive 3D Hubbard model has been studied itotisensed matter
literature [9], and similar numerical studies have attempted to model nuclear ffiditer

An advance was made recently in Monte Carlo algorithms for this sygtgn{ i1, Dia-
grammatic Monte Carlo utilizes the convergence of the perturbative expafsi@ny value of
the coupling, using importance sampling to generate configurations of \&eatitkpropagators in
position space. The worm updating algorithm in particular leads to a shagtehautocorrelation
times [I3]. Calculations have been done using a finite scaling analysis aeddahk&n the contin-
uum limit. They findTe/Tr = 0.152(7) [[4, [L2]. Note that at finite lattice spacings they find much
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lower values forfTg, in rough agreement with my exploratory calculation. The extrapolation to the
continuum limit relies on correctly fitting the sizable discretization effects.

A calculation using different Monte Carlo methods quotgsTr = 0.23(2) [[L3], while an
upper boundle/Tr < 0.14 was placed in another work J16]. The systematic errors appear unde
tightest control in the work of Burovslet al., but discrepancy between the various methods needs
to be understood and resolved.

3. Effective field theory atT =0

(This section presents collaborative work undertaken with D. T. Sdi)[17

Now let us consider temperatures far below the critical temperature, tcevtheronly rel-
evant degrees of freedom are the phonons, fluctuaighx) in the phase of the zero temper-
ature condensatgyy) = |(Yy)|exp(—2i¢). Phonons dominate the physics when the thermal
wavelength is much larger than the coherence length, roughly the size obttedated fermion
pair: \/21/T > Ve /o, Wwhere the Fermi velocityg is defined in terms of the fermion number
density and) is the gap in the fermion spectrum. The phonon is a massless Goldstone boson
resulting from the spontaneous breaking of the U(1) particle number sysmmgtr exp(ia)y,
' — Ylexp(—ia). Below we construct an effective field theory for the phonons in a ynitar
Fermi gas.

In using symmetries to constrain terms in the phonon Lagrangian, it is convéaiabsorb
the chemical potential into a fielél(t,x) = ut — ¢ (t,x). The lowest-order phonon Lagrangian is

(3.1)
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Galilean invariance forces the first derivativesfofo appear in the linear combinatioh= 6,0 —
|06|?/2. Scale invariance dictates the functional form&f at the unitary point 1a = 0; dimen-
sional analysis permits other powers)fvhena is finite. The coefficienty must be determined
from experiment or from calculation in the microscopic theory, for examum fthe energy per
fermion in the ground state. Below we writg = 2%/2/(15r2£%/2), whereé is the ratio of the
energy per particle compared to the ideal Fermi gas energy per particle.

The lowest-order Lagrangiaf (B.1) is equivalent to Landau’s supetrflydrodynamics. A
definite power counting scheme is needed to go beyond leading ordere &inever appears
undifferentiated, we start by counting all first derivativeséots terms of¢’(1). Each further
derivative brings in a power of momentudfi ~ 9" ~ &(p").

It is convenient to gauge the U(1), introducing an external figlgl A). We also write the
interaction using an auxiliary scalar fietdwith 2 free parametergy, andrp which can be tuned
to obtain any scattering length/d = 0 in particular. The microscopic Lagrangian from which we
start is as follows:

— i
L = Wt - Ayly - %nwin — iA@Y + A )
2
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. 3.2
22 (3.2)
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Note that.Z is written with a nontrivial spatial metrigj;. These external field#}o, A, gij, are
useful tools for analyzing the system’s symmetry, taking the limit wiAgre> O andg;; — & to
obtain physical results. We may wish to ke&pnonzero to include effects of the atomic tra
always appears in combination with the chemical potential, sothaf(x) is a local effective
chemical potential, e.g.

X = p—Ao(x)—dd—3(Dig)°. (3.3)

The microscopic actiorfdt dx,/g.Z is invariant under nonrelativistic general coordinate and

conformal transformations. The low energy effective action must be slynifarariant. The re-
sulting next-to-leading order Lagrangian, after takiag— 0 andgi; — &, is [[L7]

2
b = cﬁ?};) + VX [(0%9)2 — 902A] . (3.4)

Summarizing results obtained with the NLO superfluid Lagrangian, we find #uinig cor-
rection to a linear phonon dispersion relation

2

w = \/équ [l — 128 <c1+202> q] + O(cPIng). (3.5)

k2
The static density response function is found to be
Kr 9 9 4
x(@) = — 2% {1 + 21%\/2¢ <c1— 202> P + 0(q*Inq). (3.6)
And the static transverse response function is
X' (q) = —902\/§qu2 + 0(q'Inqg). (3.7)

A dispersion relation requires thgf (q) < 0; consequentlg,; must be positive. The predictivity
of the effective field theory is apparent since the 3 observablesoovestrain the 2 free parameters.
Present experiments are not able to go to low enough temperatures to segpitbeictions. How-
ever, Monte Carlo calculations should be able to bridge the gap betweenripertatures, where
phonons govern the physics, to temperatures ardgnslhere experiments can be performed. Per-
haps these calculations will be able to test the predictions of this effectiogythe

The alert reader might have noticed that the logarithmic corrections duegallagrams are
suppressed compared to the NLO terms by another powef, @fi contradistinction to the chiral
logarithms. In chiral perturbation theory, the logarithms appearing at Nige §om interaction
terms where the pion field appears undifferentiated, @y d;m)(m- d1m). Such terms are not
allowed in the (abelian) U(1) effective theory.

Let us close by emphasizing a few features of this work. It is remarkabtértiposing non-
relativistic general coordinate invariance imposes additional constrairiteegohonon Lagrangian
beyond those dictated by Galilean invariance. For example, Galilean invamaruld relax a linear
combination of operators dictated by general coordinate invarianceasg thg) would depend
on 3, not 2, low energy constants. This does not happen with relativigtarids: any Lorentz
invariant term may be made general coordinate invariant quite simply. Howbe nonrelativistic
transformation is just the — o limit of the relativistic transformation.
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One might question the physical justification of requiring the fermion Ladean(B.2) to
have this coordinate invariance — after all, the microscopic degreeseddm are atoms whose
phenomenologically successful potentials are not general coordivatgaint. However, we take
it as a valid first principle that, since the underlying dynamics in atoms areibeddy QED and
QCD, which are general coordinate invariant theories, the nonretatixgsnnant of this invariance
persists and has predictive, refutable consequences as dischesed a

Similarly, it is a logical possibility that the conformal invariance we impose nerde re-
alized by nature. (Thefi1?¢)2 and 02Aq would be linearly independent ifi (.4).) However, the
fact that the free Schrodinger equation is scale and conformally inegf@hints that the unitary
Fermi gas should also possess the same symmetry.
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