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1. Introduction

The gluon condensate of 3D Yang-Mills theory recently received intedes to its connec-
tion with the ¢'(g®) non-perturbative contribution to the free energy of QCD at high tempesatu
(more precisely, pure glue 3D Yang-Mills is believed, through dimensialation, to provide
an effective theory for the thermodynamics of the ultrasoft magnetic fieldsg®T, of QCD [A)).
This gluon condensate was recently measured on the Ifftice[2], andtezhteto continuunMS
scheme via a perturbative calculation.

A direct measurement of the gluon condensate- NiCTr[P12]> on the lattice is necessarily
dominated by lattice artifacts, basically because this is a cubic divergenbsitmpperator. How-
ever, thanks to the super-renormalizability of 3D Yang-Mills thegfylas mass dimension 1), it
is possible to calculate perturbatively and subtract the finite series ot#stillevant in tha — 0
limit. The required four loop matching calculation was completedl)in [3], provittiegcoefficients
of the following limit:
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We tabulate the values of the coefficientsin Table 1. The quantit is related to theVS free
energy:
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The difficulty involved in the four loop perturbative matching calculation justiffee use the sim-
plest available action, namely the standard Wilson action. The measureniBhwafre carried
out at a typical value o ~ 50, with statistical error bars of relative order £0 The convergence
to the continuum limit was found to be rather poor; it is therefore natural ttmtimprove it.

2. Tadpoleimprovement

The “tadpole improvement” scheme of Lepage and Mackefkie [5] attemptséohatattice
artifacts through a rescaling of the operators and coupling constang dfi¢lory. It is motivated
by the observation that the sum average of unitary matrices is not uniteung, $horter. Heuristi-
cally, infrared physics may be thought of as sngal- A, )-type fluctuations living on top of link
matrices which are shortened by short-distance fluctuations.

This shortening of the infrared operators can be estimated in a gaug&irivaay by mea-
suring the expectation value of the plaquette (which is dominated by latticepdoaies), yielding
the well-known prescription:

e “Physical” pIaquette:(l— NicTr[Plz])eff = (1— NlcTr[Plz]) /<,\|icTr[P12]>al
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¢ “Physical” coupling:Bess = B<NicTr[P12]
This replaces the limi{ (1].1) by:
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Since the relationship betwe@as andp is already known, from the perturbative res{ilt[1.1),
it is straightforward to match the serigs {2.1) ahd](1.1). Mathematically spgakie improved
limit is just as rigorous as the unimproved one.

We find, as shown in Figure 1, that this simple prescription impressively iregrihe conver-
gence to the continuum limit.

3. Cactusresummation

It is well known that in lattice perturbation theory, at the one loop level thdgiagrams pro-
duce dominant contributions. In a sense this is related to the fact that #néyeamost ultraviolet
divergent diagrams, and it is their ability to “see” the corners of the Brillaaine which spares
them from being suppressed by the ubiquitous geometrical factors theom perturbation the-
ory. However, the author is not aware of a physical argument as tothéhgactus diagrams (to
be described below) should continue to dominate lattice perturbation thelbighat loop orders.
But, at any rate, it is worth asking how well the resummation performs, lsedaupractice it is
very simple to apply.

Cactus resummation is based on the following approximation to the Schwingen2ygua-
tions of motion:

o - 1y 0 + &2 + AVE; +... (31

where the blob stands for the dressed propagator. An iterative soldtibis@quation amounts
to summing an infinite series of “cactus” diagrams. The vertices on the rigit-side of [3]1)
consist of only a restricted subset of the bare vertices of the theoighvelan be described as
follow. Using the Baker-Campbell-Hausdorff formula, the plaquette matdaaeshe expressed as
a single exponential, which can be expanded into powers of the gaugdfi€ttie link matrices
beingU, = exp(iAy)):

P = expi (FLY + RS +FY + ... (3.2)

The Wilson action, proportional t<)1— NiCTr[PW]) /9, involves a sum over the traces of products

of even numbers of ’s. The vertices of[(3]1) are those coming from products involving only
Fﬁ\l,) 'S, WhereFﬁ) = o”'LAV - 0”7\,Au is the linearized field strength operator on the lattice.

In the cactus approximation, the dressing of the propagator is momenturreircleyd, and
the gap equatior] (3.1) involves only a single number, the coeffiggqu the dressed propagator.
Panagopoulos and Vicalfi][6] have shown how to perform analyticalls &snction ofggff the
infinite sum on the RHS of (3.1), yielding an equation to be solved self-ctemsliysforggff (we set

a=1 from here):

—2dg’. d
2 eff 2
% = g
2 N.—1 2
o(ghn) — exp(-BED )y, (%) @3)

whereL,{,c_l(u) = (3—3u+Uu?/2) for SU(3), is a Laguerre polynomial, and= 3 is the dimension
of space-time.



Gluon condensate of three-dimensional Yang-Mills theory S. Caron-Huot

3.1 An effectivetheory

The cactus dressing of the inverse propagator should be applied similaHpfdhe operators
appearing in the action. It is found that the cactus dressing of an opeiggends only on the
number oﬂ:ﬁ'ﬁ’s out of which it is constructed. In particular, the three-point vertex thie part of

4
the four-point vertex not involving rF‘S\l,)) are all simply rescaled by the same facg%;‘ggﬁ as

the inverse propagator, because they all involve only Iﬁ&bs, suggesting to interprﬁff as an
effective coupling constant.

However, the dressing of the unit operator and of higher-dimensigetors will be dif-
ferent. The dressing of the unit operator is simple to evaluate, but thet effdressing the other
operators is more difficult to account for. This suggests introducing alsieffective theory,
rewriting the action via:

1— NicTr[Pw] leactus 1— NiCTr[PW]
9 02 02
1
1cactus =1- WG(géﬁ) (3-4)
C

+ (remaindey

where the remainder is expanded into powergZgh, e.g., each extra power gf; is thought of
as higher order in the loop expansion. The terx.dsis precisely the sum of all purely “cac-

tus” diagrams, e.g. full contractions of the vertices(FFﬁ)) " using the dressed propagator. A
loopwise calculation in this theory involves summing all diagrams up to a given euafittoops,
which do not contain cactus subdiagrams, except when this cactusdrdsters from theg? /g2,
rescaling.

For the expectation value of the plaquette, we calculate the expectation ¥athe action
(times g?) in this effective theory. This yields the termadys plus a series in powers (gﬁﬁ
multiplied by an overalt?/g24:
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where et = 2Nc/g§_ﬁ. Thus, becausggff can be expanded into an asymptotic serieg?invith
easily computable coefficients, the coefficients of the sefiek (3.5) carceed from no addi-
tional input than the knowledge of the unimproved serjeg (1.1). This nmeepty holds for any
observable in the theory, and renders this effective theory particuladyable from a practical
viewpoint.

As mentioned above, this effective theory is not unique. For instaneemight argue that
a “better” effective theory could be obtained by incorporating the exteasing (difference from
the gz/ggff rescaling) of higher dimensional operators, at the price of making ctitmgamore

1As is well-known, the loop expansion in this theory breaks down startinguatidop, due to infrared divergences
[. We are ignoring this problem, focusing on lattice artifacts issues.
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Figure 1. Comparison between the original data ﬂf [2] and its improvedsions. The fits are quadratic in

B

complicated. However, we have estimated the magnitude of the effects oh shalice, and found
them to be numerically small (about an order of magnitude smaller than thébarsoof Figure 1).

As exhibited by Table 1, we find that the expansion coefficients of the et&yin the cactus-
improved scheme are significantly smaller than the original ones. This meaeadthas diagrams
account for a numerically large fraction of the perturbative series.

4. Resultsand Conclusion

We compare the results of taking the different limits, shown on Figure 1. Tdtespeaks
for itself: the improved limits clearly appear more convincing. The originaliltesas Bg =
—0.2+0.4. Quadratic fits of the improved data yiddd = —0.6+0.3 andBg = —0.75+ 2 for the
cactus- and tadpole- improved data respectively. These error estimatesidclude the additional
+0.4 stemming from the theoretical uncertainty in the four loop coeffiagignt

It is also interesting to compare the coefficients used in the various limits. Tkeeshawn
in Table 1. The coefficients of the imprO\}ed limits represent what is left byéhe improvement
scheme. The coefficients, ¢y, c3 arise purely from lattice artifacts, and it is satisfying to notice
that whenever they get modified by the improvement, they get significantly snidile coefficient
of the logarithmgy, is universal and arises from the sensitivity of the plaquette to an idfrasss
scale, provided by the scale of non-perturbative phy&iesg?. No improvement scheme designed
to deal with lattice artifacts is expected to be able to see it.

The coefficientc), which is the difference between théS and lattice constants next to the
logarithm, receives contribution from both infrared and lattice scale phyRits satisfying to note
that it is smaller in the improvement schemes, but no particular physical samiéicshould be
attached to the fact that it is so impressively small in the cactus scheme.

The author acknowledges discussions with G. D. Moore, which motivaése fhvestigations,
and thanks K. Kajantie for having provided the numerical data which wed inshe plots.
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coefficient| unimproved tadpole cactus
C1 8/3 8/3 0
C2 1.951315(2) | 1.951315(2) | -0.270907(2)
C3 6.8612(2) 1.6577(2) 1.7818(2)
(Ca) 2.92942132...| 2.92942132...| 2.92942132...
C, 7.0(3) -1.7(3) -0.3(3)

Table 1: The coefficients used in the unimproved and improved limits.
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