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We apply the tadpole and cactus improvement methods to the measurement of the gluon conden-

sate of 3D SU(3) Yang-Mills theory. The matching of the lattice measurement to the continuum

MS scheme involves the subtraction of a series of lattice artifacts divergent up to four loop, which

has recently appeared in the literature. The two tested improvement methods are found to sig-

nificantly increase the convergence to the continuum. The well-known dominance of tadpole

diagrams in lattice perturbation theory is observed to persist at higher orders under the form of

“cactus” diagrams.
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1. Introduction

The gluon condensate of 3D Yang-Mills theory recently received interest, due to its connec-
tion with theO(g6) non-perturbative contribution to the free energy of QCD at high temperatures
(more precisely, pure glue 3D Yang-Mills is believed, through dimensional reduction, to provide
an effective theory for the thermodynamics of the ultrasoft magnetic fields,k ∼ g2T , of QCD [1]).
This gluon condensate was recently measured on the lattice[2], and converted to to continuumMS
scheme via a perturbative calculation.

A direct measurement of the gluon condensate
〈

1− 1
Nc

Tr[P12]
〉

on the lattice is necessarily
dominated by lattice artifacts, basically because this is a cubic divergent composite operator. How-
ever, thanks to the super-renormalizability of 3D Yang-Mills theory (g2 has mass dimension 1), it
is possible to calculate perturbatively and subtract the finite series of artifacts relevant in thea → 0
limit. The required four loop matching calculation was completed in [3], providingthe coefficients
of the following limit:

8
dAN6

c

(4π)4 BG = lim
a→0

β 4
{

〈

1−
1

Nc
Tr[P12]

〉

a
−

[

c1

β
+

c2

β 2 +
c3

β 3 +
c4

β 4

(

lnβ + c′4
)

]}

(1.1)

We tabulate the values of the coefficientscn in Table 1. The quantityBG is related to theMS free
energy:

fMS = −g6 dAN3
c

(4π)4

[(

43
12

−
157
768

π2
)

ln
µMS

2Ncg2 +BG

]

(1.2)

The difficulty involved in the four loop perturbative matching calculation justified the use the sim-
plest available action, namely the standard Wilson action. The measurement of[2] were carried
out at a typical value ofβ ∼ 50, with statistical error bars of relative order 10−6. The convergence
to the continuum limit was found to be rather poor; it is therefore natural to tryto improve it.

2. Tadpole improvement

The “tadpole improvement” scheme of Lepage and Mackenzie [5] attempts to absorb lattice
artifacts through a rescaling of the operators and coupling constant of the theory. It is motivated
by the observation that the sum average of unitary matrices is not unitary, but is shorter. Heuristi-
cally, infrared physics may be thought of as small(1+ iAµ)-type fluctuations living on top of link
matrices which are shortened by short-distance fluctuations.

This shortening of the infrared operators can be estimated in a gauge-invariant way by mea-
suring the expectation value of the plaquette (which is dominated by lattice-scalephysics), yielding
the well-known prescription:

• “Physical” plaquette:
(

1− 1
Nc

Tr[P12]
)

eff
≡

(

1− 1
Nc

Tr[P12]
)

/
〈

1
Nc

Tr[P12]
〉

a

• “Physical” coupling:βeff ≡ β
〈

1
Nc

Tr[P12]
〉

a

This replaces the limit (1.1) by:

8
dAN6

c

(4π)4 BG = lim
a→0

ββ 3
eff

c(T )
4

{

〈

1−
1

Nc
Tr[P12]

〉

a
−

[

c(T )
1

β
+

c(T )
2

ββeff
+

c(T )
3

ββ 2
eff

+
c(T )

4

ββ 3
eff

lnβeff +
c′(T )

4

ββ 3
eff

]}

(2.1)
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Since the relationship betweenβeff andβ is already known, from the perturbative result (1.1),
it is straightforward to match the series (2.1) and (1.1). Mathematically speaking, the improved
limit is just as rigorous as the unimproved one.

We find, as shown in Figure 1, that this simple prescription impressively improves the conver-
gence to the continuum limit.

3. Cactus resummation

It is well known that in lattice perturbation theory, at the one loop level tadpole diagrams pro-
duce dominant contributions. In a sense this is related to the fact that they are the most ultraviolet
divergent diagrams, and it is their ability to “see” the corners of the Brillouinzone which spares
them from being suppressed by the ubiquitous geometrical factors of continuum perturbation the-
ory. However, the author is not aware of a physical argument as to whythe cactus diagrams (to
be described below) should continue to dominate lattice perturbation theory athigher loop orders.
But, at any rate, it is worth asking how well the resummation performs, because in practice it is
very simple to apply.

Cactus resummation is based on the following approximation to the Schwinger-Dyson equa-
tions of motion:
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+ . . . (3.1)

where the blob stands for the dressed propagator. An iterative solution of this equation amounts
to summing an infinite series of “cactus” diagrams. The vertices on the right-hand side of (3.1)
consist of only a restricted subset of the bare vertices of the theory, which can be described as
follow. Using the Baker-Campbell-Hausdorff formula, the plaquette matricescan be expressed as
a single exponential, which can be expanded into powers of the gauge fieldAµ (the link matrices
beingUµ = exp(iAµ)):

Pµν ⇒ expi
(

F(1)
µν +F(2)

µν +F(3)
µν + . . .

)

(3.2)

The Wilson action, proportional to
(

1− 1
Nc

Tr[Pµν ]
)

/g2, involves a sum over the traces of products

of even numbers ofF(i)’s. The vertices of (3.1) are those coming from products involving only
F(1)

µν ’s, whereF(1)
µν = ∂̃µAν − ∂̃νAµ is the linearized field strength operator on the lattice.

In the cactus approximation, the dressing of the propagator is momentum independent, and
the gap equation (3.1) involves only a single number, the coefficientg2

eff of the dressed propagator.
Panagopoulos and Vicari [6] have shown how to perform analytically asa function ofg2

eff the
infinite sum on the RHS of (3.1), yielding an equation to be solved self-consistently forg2

eff (we set
a = 1 from here):

g2
o =

−2dg2
eff

N2
c −1

d

dg2
eff

G(g2
eff)

G(g2
eff) = exp

(

−
g2

eff(Nc −1)

2dNc

)

L1
Nc−1

(

g2
eff

d

)

(3.3)

whereL1
Nc−1(u) = (3−3u+u2/2) for SU(3), is a Laguerre polynomial, andd = 3 is the dimension

of space-time.
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3.1 An effective theory

The cactus dressing of the inverse propagator should be applied similarly toall of the operators
appearing in the action. It is found that the cactus dressing of an operator depends only on the
number ofF(i)

µν ’s out of which it is constructed. In particular, the three-point vertex and the part of

the four-point vertex not involving Tr
(

F(1)
µν

)4
are all simply rescaled by the same factorg2/g2

eff as

the inverse propagator, because they all involve only twoF(i)
µν ’s, suggesting to interpretg2

eff as an
effective coupling constant.

However, the dressing of the unit operator and of higher-dimensional operators will be dif-
ferent. The dressing of the unit operator is simple to evaluate, but the effect of dressing the other
operators is more difficult to account for. This suggests introducing a simple effective theory,
rewriting the action via:

1− 1
Nc

Tr[Pµν ]

g2 ⇒
1cactus

g2 +
1− 1

Nc
Tr[Pµν ]

g2
eff

+(remainder)

1cactus = 1−
1

Nc
G(g2

eff) (3.4)

where the remainder is expanded into powers ofg2
effh̄, e.g., each extra power ofg2

eff is thought of
as higher order in the loop expansion. The term 1cactus is precisely the sum of all purely “cac-

tus” diagrams, e.g. full contractions of the vertices Tr
(

F(1)
µν

)2n
using the dressed propagator. A

loopwise calculation in this theory involves summing all diagrams up to a given number of loops,
which do not contain cactus subdiagrams, except when this cactus dressing differs from theg2/g2

eff

rescaling1.

For the expectation value of the plaquette, we calculate the expectation value of the action
(times g2) in this effective theory. This yields the term 1cactus, plus a series in powers ofg2

eff

multiplied by an overallg2/g2
eff:

8
dAN6

c

(4π)4 BG = lima→0
ββ 3

eff

c(c)
4

{

〈

1−
1

Nc
Tr[P12]

〉

a
−1cactus

−

[

c(c)
1

β
+

c(c)
2

ββeff
+

c(c)
3

ββ 2
eff

+
c(c)

4

ββ 3
eff

lnβeff +
c′(c)4

ββ 3
eff

]}

(3.5)

whereβeff = 2Nc/g2
eff. Thus, becauseg2

eff can be expanded into an asymptotic series ing2 with
easily computable coefficients, the coefficients of the series (3.5) can be deduced from no addi-
tional input than the knowledge of the unimproved series (1.1). This nice property holds for any
observable in the theory, and renders this effective theory particularlytractable from a practical
viewpoint.

As mentioned above, this effective theory is not unique. For instance, one might argue that
a “better” effective theory could be obtained by incorporating the extra dressing (difference from
the g2/g2

eff rescaling) of higher dimensional operators, at the price of making calculations more

1As is well-known, the loop expansion in this theory breaks down starting at four loop, due to infrared divergences
[4]. We are ignoring this problem, focusing on lattice artifacts issues.
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Figure 1: Comparison between the original data of [2] and its improvedversions. The fits are quadratic in
β−1.

complicated. However, we have estimated the magnitude of the effects of sucha choice, and found
them to be numerically small (about an order of magnitude smaller than the errorbars of Figure 1).

As exhibited by Table 1, we find that the expansion coefficients of the plaquette in the cactus-
improved scheme are significantly smaller than the original ones. This means that cactus diagrams
account for a numerically large fraction of the perturbative series.

4. Results and Conclusion

We compare the results of taking the different limits, shown on Figure 1. The plot speaks
for itself: the improved limits clearly appear more convincing. The original result was BG =

−0.2±0.4. Quadratic fits of the improved data yieldBG = −0.6±0.3 andBG = −0.75±2 for the
cactus- and tadpole- improved data respectively. These error estimates do not include the additional
±0.4 stemming from the theoretical uncertainty in the four loop coefficientc′4.

It is also interesting to compare the coefficients used in the various limits. They are shown
in Table 1. The coefficients of the improved limits represent what is left overby the improvement
scheme. The coefficientsc1, c2, c3 arise purely from lattice artifacts, and it is satisfying to notice
that whenever they get modified by the improvement, they get significantly smaller. The coefficient
of the logarithm,c4, is universal and arises from the sensitivity of the plaquette to an infrared mass
scale, provided by the scale of non-perturbative physics,k ∼ g2. No improvement scheme designed
to deal with lattice artifacts is expected to be able to see it.

The coefficientc′4, which is the difference between theMS and lattice constants next to the
logarithm, receives contribution from both infrared and lattice scale physics. It is satisfying to note
that it is smaller in the improvement schemes, but no particular physical significance should be
attached to the fact that it is so impressively small in the cactus scheme.

The author acknowledges discussions with G. D. Moore, which motivated these investigations,
and thanks K. Kajantie for having provided the numerical data which was used in the plots.
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coefficient unimproved tadpole cactus

c1 8/3 8/3 0

c2 1.951315(2) 1.951315(2) -0.270907(2)

c3 6.8612(2) 1.6577(2) 1.7818(2)

(c4) 2.92942132. . . 2.92942132. . . 2.92942132. . .

c′4 7.0(3) -1.7(3) -0.3(3)

Table 1: The coefficients used in the unimproved and improved limits.
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