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1. Introduction

Discretization errors are an important source of uncertainty in lattice QCD calculations with
heavy quarks. As with gluons and light quarks, one uses effective field theory to understand and
control discretization (aka cutoff or lattice-spacing) effects. With heavy quarks there are two pos-
sibilities: a (modified) Symanzik effective Lagrangian and a (modified) heavy-quark effective La-
grangian (HQET for heavy-light hadrons; NRQCD for quarkonium).

Usually, the Symanzik local effective Lagrangian (LEL ) is devised with only one short dis-
tance in mind, the lattice spacing a. Similarly, HQET/NRQCD is usually constructed with only the
heavy quark’s (or quarks’) Compton wavelength(s), 1/mQ, as short distance(s). With heavy quarks
on a lattice one must consider both kinds of short distances. In particular, couplings in the lat-
tice Lagrangian and Wilson coefficients in the effective Lagrangians depend on the dimensionless
ratio(s) mQa.

Treating the inverse quark mass as a short distance, the Symanzik LEL can be written [1]

LSym = −q̄
(

γ4D4 +
√

m1

m2
γγγ ·DDD+m1

)
q+aKlat

t q̄(γ4D4 +m1)2q+aKlat
s q̄DDD2q

+ aKlat
B q̄iΣΣΣ ·BBBq+aKlat

E q̄ααα ·EEEq+ · · · , (1.1)

where m1 is the renormalized rest mass, and mass-dependent short-distance effects are lumped into√
m1/m2 and the coefficients Klat. An improved action is devised by adjusting LSym to reproduce

QCD. Some coefficients may be made to vanish via field redefinitions, such as Klat
t and Klat

s [2, 3].
The others must be addressed by matching the underlying lattice Lagrangian:

m1 = m2 = mQ, Klat
B (cB) = 0, Klat

E (cE) = 0, . . . , (1.2)

where mQ is the physical quark mass, and cB and cE are couplings of dimension-five interactions
in the Fermilab lattice action for heavy quarks [3].

Treating the lattice spacing and inverse heavy quark mass as short distances, the heavy-quark
effective Lagrangian is [4]

LHQ = −h̄(±) (γ4D4 +m1)h(±) +
h̄(±)DDD2h(±)

2m2
+

Zlat
B h̄(±)iΣΣΣ ·BBBh(±)

2m2

+
Zlat

E h̄(±)iΣΣΣ · [DDD×EEE]h(±)

8m2
2

+
Zlat

D h̄(±)DDD ·EEEh(±)

8m2
2

+ · · · , (1.3)

where the Zlat capture the short-distance effects. In parallel, one can construct this effective La-
grangian for continuum QCD, with the same operators but different coefficients Zcont. Now im-
provement is achieved by choosing improvement couplings in the underlying lattice Lagrangian,
so that the two effective HQ Lagrangians coincide. That is

m2 = mQ, Zlat
B (cB) = Zcont

B , Zlat
E (cE) = Zcont

E , . . . . (1.4)

Both sets of conditions, Eqs. (1.2) or Eqs. (1.4), yield the same results for the improvement cou-
plings cB and cE .
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In this paper we focus on an extension of the Fermilab method to include all interactions of
dimension six. Some aspects have been reported earlier [5, 6]. Here, we first discuss a subtlety
in the power counting, which implies that we must also consider certain interactions of dimension
seven to be commensurate with some of those of dimension six.

2. Power Counting

With heavy quarks one must pay special attention to power counting. This is simplest in
heavy-light hadrons, where the typical three-momentum in the rest frame is p ≈ ΛQCD. Then it is
useful to define nΓ, which is 0 or 1, depending on whether the Dirac matrix Γ in a quark bilinear
commutes or anticommutes with γ4. A bilinear of dimension d introduces physical effects of order

(aΛQCD)d−4
(

ΛQCD

mQ

)nΓ

∼ (aΛQCD)d−4+nΓ ∼
(

ΛQCD

mQ

)d−4+nΓ

, (2.1)

which are all the same once one allows for coefficient functions that depend on mQa, with mQa
of order unity. This power counting has recently been considered by Christ, Li, and Lin [7]. It is
useful for hadrons with one heavy quark, but for quarkonium one should adopt the power counting
of nonrelativistic QCD [8].

We shall denote terms in the lattice action by S(d,nΓ) to classify them by their power count-
ing (2.1). The terms with nΓ = 1 are necessary to ensure a smooth limit when mQa→ 0 [3], which is
a feature distinguishing the Fermilab method from lattice NRQCD. Ref. [3] treated S(5,0) and S(5,1)

(and cursorily S(6,0)). Here we complete the analysis presented at earlier Lattice symposia [5, 6] to
encompass the full set of interactions in S(6,1) and S(7,0).

3. Improved Fermilab Action

The Fermilab action is a generalization of the Sheikholeslami-Wohlert action. We write

S = S0 +
∞

∑
d=5

1

∑
nΓ=0

S(d,nΓ), (3.1)

where

S0 = m0a4
∑
x

ψ̄(x)ψ(x)+a4
∑
x

ψ̄(x)γ4D4latψ(x)− 1
2 a5

∑
x

ψ̄(x)44latψ(x)

+ζ a4
∑
x

ψ̄(x)γγγ ·DDDlatψ(x)− 1
2 rsζ a5

∑
x

ψ̄(x)4(3)
lat ψ(x). (3.2)

We denote lattice fermions fields with ψ to distinguish them from the continuum quark fields in
Eqs. (1.1) and (1.3). The coupling ζ allows one to adjust m2 = m1 in Eq. (1.1). The notation for
DDDlat, 4(3)

lat , etc., is as in Ref. [3]. The dimension-five interactions are [2, 3]

S(5,0) = SB = −1
2 cBζ a5

∑
x

ψ̄(x)iΣΣΣ ·BBBlatψ(x), (3.3)

S(5,1) = SE = −1
2 cEζ a5

∑
x

ψ̄(x)ααα ·EEE latψ(x), (3.4)
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where the notation SB and SE is from Ref. [3]. At dimension six and seven we introduce

S(6,0) = rEa6
∑
x

ψ̄(x){γγγ ·DDDlat,ααα ·EEE lat}ψ(x)

+ zEa6
∑
x

ψ̄(x)γ4 (DDDlat ·EEE lat−EEE lat ·DDDlat)ψ(x), (3.5)

S(6,1) = c1a6
∑
x

ψ̄(x)∑
i

γiDilat4ilatψ(x)

+ c2a6
∑
x

ψ̄(x){γγγ ·DDDlat,4(3)
lat }ψ(x)

+ c3a6
∑
x

ψ̄(x){γγγ ·DDDlat, iΣΣΣ ·BBBlat}ψ(x)

+ z3a6
∑
x

ψ̄(x)γγγ · (DDDlat×BBBlat +BBBlat×DDDlat)ψ(x)

+ cEEa6
∑
x

ψ̄(x){γ4D4lat,ααα ·EEE lat}ψ(x), (3.6)

S(7,0) = c4a7
∑
x

ψ̄(x)∑
i
4i

2
latψ(x)

+ c5a7
∑
x

ψ̄(x)∑
i

∑
j 6=i
{iΣiBilat,4 j lat}ψ(x)

+ r5a7
∑
x

ψ̄(x)∑
i

∑
j 6=i

iΣi [D jBiD j]lat ψ(x)

+ z6a7
∑
x

ψ̄(x)
(
4(3)

lat

)2
ψ(x)

+ z7a7
∑
x

ψ̄(x){4(3)
lat , iΣΣΣ ·BBBlat}ψ(x)

+ z′7a7
∑
x

ψ̄(x)[DiiΣΣΣ ·BBBDi]latψ(x)

+ r7a7
∑
x

ψ̄(x)γγγ ·DDDlatiΣΣΣ ·BBBlatγγγ ·DDDlatψ(x)

+ r′7a7
∑
x

ψ̄(x)[DDD · (BBB×DDD)]latψ(x)

+ rBBa7
∑
x

ψ̄(x)(iΣΣΣ ·BBBlat)
2

ψ(x)

+ zBBa7
∑
x

ψ̄(x)BBBlat ·BBBlatψ(x)

− rEEa7
∑
x

ψ̄(x)(ααα ·EEE lat)
2

ψ(x)

+ zEEa7
∑
x

ψ̄(x)EEE lat ·EEE latψ(x). (3.7)

In particular, in heavy-quark power counting the interactions in S(7,0) are commensurate with those
in S(6,1). Most of these interactions have been discussed previously [5, 6], but the following is the
first discussion of interactions with two chromomagnetic or chromoelectric fields, and the related
interaction with coupling cEE .1

By applying arbitrary field redefinitions one can make certain coefficients in the effective La-
grangian vanish, and their interactions are called redundant. A corresponding number of couplings

1At dimension six and higher one must also consider four-quark interactions, which we shall discuss elsewhere.
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in the lattice action may be chosen by convenience. For example, to obviate the doubling prob-
lem one sets rs 6= 0 and rt = 1 in Eq. (3.2). One can show that all interactions with further time
derivatives acting on quark and antiquark fields are redundant, so we omit them from Eqs. (3.3)–
(3.7). Among the rest there is some freedom on which ones to call redundant; with an eye towards
efficiency in computing quark propagators we choose

rE = r5 = r7 = r′7 = rBB = rEE = 0, (3.8)

a choice that is substantiated further by the matching calculations discussed in the next section.

4. Matching

To find out how to adjust the other couplings, we must explicitly derive Eqs. (1.2) or, equiva-
lently, Eqs. (1.4), and solve them for the couplings in the lattice action. Because the action includes
interactions with two chromoelectric and two chromomagnetic fields, we have done so by working
out the amplitude for Compton scattering. We find, not unexpectedly, that many couplings vanish
at the tree level. To be specific, tree-level matching yields

zE = z3 = z6 = z7 = z′7 = zBB = zEE = 0, (4.1)

but these become non-trivial beyond the tree level.
The other couplings—cB, cE , cEE , c1, c2, c3, c4, and c5—must be non-zero, with an explicit,

sometimes nontrivial, dependence on (m0a,ζ ,rs). We do not have space to discuss the intermediate
steps here, so we quote the final result of tree-level matching. We find

cB = rs, (4.2)

cE =
ζ 2−1

m0a(2+m0a)
+

rsζ

1+m0a
+

r2
s m0a(2+m0a)
4(1+m0a)2 , (4.3)

c1 = −1
6 ζ + cB

m0a(2+m0a)
6(1+m0a)

, (4.4)

c2 = c3 =
ζ 3(ζ 2−1)

[2m0a(2+m0a)]2
− ζ 2[ζ +2rs(1+m0a)−3rsζ

2/(1+m0a)]
8m0a(2+m0a)

+
3r2

s ζ 3

16(1+m0a)2 +
m0a(2+m0a)r2

s ζ

32(1+m0a)2

[
rsζ

1+m0a
−1

]
, (4.5)

cEE [2+m0a(2+m0a)] =
ζ (ζ 2−1)(1+m0a)

[m0a(2+m0a)]2
+

cEζ (ζ 2−1)(1+m0a)
m0a(2+m0a)

+
ζ (rsζ −1−m0a)
2m0a(2+m0a)

+ 1
2 rscEζ

2− 1
4 c2

Eζ (1+m0a), (4.6)

c4 = 1
24 rsζ + 1

3 cBζ , (4.7)

c5 = 1
4 cBζ . (4.8)

Some aspects are not surprising: for example c2 = c3, which makes sense because together they
provide an interaction of the form ψ̄(γγγ ·DDD)3ψ . Two out of the three couplings (c4,c5,r5) must be
nonzero, essentially to correct errors from the BBBlat in S(5,0). We choose c4 6= 0 because we expect
its interaction to be easier to compute than that with coupling r5.
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5. Outlook

In several recent calculations with Fermilab quarks, the largest systematic uncertainty comes
from a (conservative) estimate of heavy-quark discretization effects. With the improved action
presented here, the same technique for estimating the uncertainties [9] suggests that these effects
are reduced to a few percent [6]. To achieve this target, tree-level matching should suffice for S(6,1)

and S(7,0). For S(5,0), S(5,1), and S(6,0) higher accuracy is needed, either at the one-loop [10, 11] or
(for cB in S(5,0)) nonperturbative level [12].
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