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1. Introduction

It becomes more and more apparent that twisted mass Lattice QCD (tmLQCD) [1, 2] is a
promising formulation to approach the chiral limit of QCD, despite the fact that the flavor symme-
try is explicitly broken. A twisted mass protects the Wilson-Dirac operator against small eigenval-
ues and therefore solves the problem of exceptional configurations [3, 4], thus making numerical
simulations with small quark masses feasible [5]. This numerical advantage of tmLQCD is supple-
mented by the property of automatic O(a) improvement [6]. For a recent review of these and some
more results in twisted mass LQCD see Ref. [7].

The so-called “maximal twist” condition, required for the proof of automatic O(a) improve-
ment [6], however, causes some confusions. For example, it has been suggested [6] that maximal
twist can be achieved by setting the bare untwisted mass to the critical quark mass of the Wilson
fermion where the pion mass vanishes (we call this choice “the pion mass definition” in the fol-
lowing). However, it has been pointed out [8] that this choice does not lead to automatic O(a)

improvement. Indeed, terms linear in a and with fractional powers of a are predicted by Wilson
Chiral Perturbation Theory (WChPT) for very small twisted quark masses. On the other hand,
automatic O(a) improvement is expected to hold if the critical mass is defined through the partially
conserved axial vector Ward identity quark mass (PCAC mass definition).

In this report we present an explicit condition based on symmetries of the Symanzik theory,
required for automatic O(a) improvement, and prove that scaling violations of all quantities which
have non-zero values in the continuum limit are even in a (O(a) improvement). The detailed proof
of this statement has already been published in Ref. [9]. Therefore, in this report we try to avoid
unnecessary rigorousness in our proof and stress the mechanism which leads to O(a) improvement
in twisted mass QCD.

2. Condition and proof for automatic O(a) improvement

We first give our statement, which will be proven in this report. Twisted mass QCD with a
certain condition leads to automatic O(a) improvement, which means that operators as well as the
action are automatically O(a) improved without any improvement coefficients. This holds true
even in the massive case and without the explicit use of the equations of motion. More explicitly,
all scaling violations of non-zero physical quantities are even in a, while quantities which vanish
in the continuum limit have only odd powers in a.

2.1 Main idea of the proof

The twisted mass lattice QCD action for the 2-flavor theory is given by Stm = SG +SF , where
SG is the gauge action and

SF = ∑
x,µ

ψ̄L(x)
1
2

[

γµ(∇+
µ +∇−

µ )ψL −ar∇+
µ ∇−

µ ψL
]

(x)+∑
x

ψ̄L(x)M0eiθ0γ5τ3
ψL(x) (2.1)

is the 2-flavor Wilson fermion action with a twisted mass term, where M0 and θ0 denote the bare
mass and bare twist angle. It is also customary to write M0eiθ0γ5τ3

= m0 + iµ0γ5τ3, using the bare
untwisted mass m0 and the bare twisted mass µ0.
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This action is invariant under the following global transformations: (1) U(1)⊗U(1) vector
symmetry, ψL → ei(α0+α3τ3)ψL, ψ̄L → ψ̄Le−i(α0+α3τ3) . This transformation is part of the U(2) flavor
symmetry of the untwisted theory. (2) Extended parity symmetry P1,2

F : ψL(x) → τ1,2γ4ψL(Px),
ψ̄L(x)→ ψ̄L(Px)γ4τ1,2 where P is the parity transformation. Alternatively, one can also augment P
with a sign change of the twisted mass term µ0, P̃ = P× [µ0 →−µ0], which is also a symmetry of
the action. (3) Standard charge conjugation symmetry, as in the untwisted theory.

The lattice theory can be described by an effective continuum theory (the Symanzik theory),
whose effective action is restricted by locality and the symmetries of the underlying lattice theory.
Taking into account the symmetries listed above one finds Seff = S0 + aS1 + a2S2 + · · ·, where the
first two terms are given as

S0 = S0,gauge +
∫

d4x ψ̄(x)
[

γµDµ +MReiθγ5τ3
]

ψ(x), (2.2)

S1 = C1

∫

d4x ψ̄(x)σµν Fµν(x)ψ(x). (2.3)

S0,gauge denotes the standard continuum gauge field action in terms of the gauge field tensor Fµν .
The second term in S0 is the continuum twisted mass fermion action. It is worth mentioning
that there is no “twisted” Pauli term ψ̄γ5τ3σµν Fµν ψ present in S1, since such a term violates the
symmetry P̃.

In addition to the effective action we have to specify the direction of the chiral condensate,
since chiral symmetry is spontaneously broken. From the fact that the direction of the chiral con-
densate is completely controlled by the direction of the symmetry breaking external field (i.e. the
quark mass) in the continuum theory, we can take

〈ψ̄ i
αψ j

β 〉S0 =
v(MR)

8

[

e−iθγ5τ3
] ji

βα
, (2.4)

where limMR→0 limV→∞ v(MR) 6= 0. Here the vacuum expectation value (VEV) is defined with
respect to the continuum action S0. To say it differently, the VEV (2.4) defines the twist angle θ in
the Symanzik theory.

We now want to argue that the choice θ = π/2 (or −π/2) corresponds to “maximal twist”. In
terms of the mass parameters this is equivalent to MR = µR and mR = 0. In this case the action and
the VEVs become

S0 = S0,gauge +
∫

d4x ψ̄(x)
[

γµDµ + iMRγ5τ3]ψ(x), (2.5)

〈ψ̄ψ〉S0 = 0, 〈ψ̄iγ5τ3ψ〉S0 = v(MR) . It is easy to check that S0, the continuum part of the ef-
fective action is invariant under ψ → eiwγ5τ1,2ψ , ψ̄ → ψ̄eiwγ5τ1,2

, and therefore also under the Z2

subgroup T1 of this continuous transformation, defined by T1ψ = iγ5τ1ψ , T1ψ̄ = ψ̄iγ5τ1. Since
T 2

1 = 1 in the space of fermion number conserving operators, which contain equal numbers of
ψ and ψ̄ , the eigenvalues of T1 are 1 (T1-even) or −1 (T1-odd). The crucial observation is that
the VEVs 〈ψ̄ψ〉 and 〈ψ̄iγ5τ3ψ〉 are also invariant under this transformation. The T1 symmetry
is not spontaneously broken, hence it is an exact symmetry of the continuum theory. The O(a)

term aS1 = aC1
∫

d4x ψ̄(x)σµν Fµν(x)ψ(x), on the other hand, is odd under T1. Therefore, non-
vanishing physical observables, which must be even under T1, can not have an O(a) contribution,
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since the O(a) term is odd under T1 and therefore must vanish identically. This is automatic O(a)

improvement at “maximal twist”. Note that non-invariant, i.e. T1-odd quantities, which vanish in
the continuum limit, can have O(a) contributions.

The above argument gives just the main idea of our proof for automatic O(a) improvement,
and we will give a detailed proof in the next subsection. However, one of the most important points
of our analysis is that the condition for automatic O(a) improvement is the invariance of theory
under T1 transformation, or more generally its continuous version, which corresponds to a part of
the exact vector symmetry in continuum QCD at “maximal twist”. One might even say that the
T1 invariance is more fundamental for automatic O(a) improvement than the notion of “maximal
twist”, which is one of the consequences of T1 invariance.

2.2 General proof

Let us consider an arbitrary multi-local lattice operator Ot p,d
lat ({x}), where {x} represents

x1,x2, · · · ,xn, d is the canonical dimension of the operator, t = 0,1 and p = 0,1 denote the transfor-
mation properties under T1 and P:

T1 : Ot p,d
lat ({x}) → (−1)tOt p,d

lat ({x}), P : Ot p,d
lat ({~x, t}) → (−1)pOt p,d

lat ({−~x, t}). (2.6)

Here we do not include the dimension coming from powers of the quark mass in the canonical
dimension d of the operators.

The lattice operator Ot p,d
lat corresponds to a sum of continuum operators Otn pn,n (n: non-negative

integer) in the Symanzik theory as

Ot p,d
lat =

∞

∑
n=d

an−d ∑
tn,pn

ct p,d
tn pn,nOtn pn,n, (2.7)

where n is the canonical dimension of the continuum operator Otn pn,n which consists of ψ̄ , ψ , Aµ

and Dµ only without any mass parameters, and

T1 : Otn pn,n({x}) → (−1)tnOtn pn,n({x}), P : Otn pn,n({~x, t}) → (−1)pnOtn pn,n({−~x, t}), (2.8)

with tn, pn = 0,1. To have a total dimension d in the expansion in Eq. (2.7), the coefficients ct p,d
tn pn,n

must be dimensionless. Here, to make an argument simpler, we consider the lattice operator, whose
power divergences can be subtracted without spoiling our proof[9].

The following selection rules among these operators are crucial for our proof of automatic
O(a) improvement:

t + p+d = tn + pn +n mod(2), p+#µ0 = pn +(#µ0)n mod(2), (2.9)

where #µ0 and (#µ0)n denote the numbers of µ0’s in Ot p,d
lat and ct p,d

tn pn,n, respectively. The second
equality can be easily proven by the invariance of the lattice action (2.1) under the P̃ = P× [µ0 →

−µ0] transformation. To prove the first equality, we introduce the following transformation:

D
1
d :























Uµ(x) → U†
µ(−x−aµ)

(

Aµ(x) → −Aµ(−x)
)

ψ(x) →
(

eiπτ1
)3/2 ψ(−x)

ψ̄(x) → ψ̄(−x)
(

eiπτ1
)3/2

, (2.10)
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which is a modified version of the transformation Dd introduced in Ref. [6]. Since it is easy to
show that the lattice action (2.1) is invariant under T1 ×D1

d , in addition to the invariance under P1
F ,

the lattice action is invariant under T1×D1
d ×P1

F . On the other hand, we can easily see that D 1
d ×P1

F

counts the canonical dimension times the parity of the operator as

D
1
d ×P1

F : Ot p,d
lat ({~x, t}) → (−1)d+pOt p,d

lat ({~x,−t}), (2.11)

D
1
d ×P1

F : Otn pn,n({~x, t}) → (−1)n+pnOtn pn,n({~x,−t}). (2.12)

Therefore, the invariance of the action under T1 ×D1
d ×P1

F implies the first selection rule.
Let us show how these selection rules are used to determine the structure of operators in the

Symanzik theory. We first consider the Symanzik expansion of the lattice action Stm:

Stm =
∞

∑
n=0

[

a2n(S00,2n + µ0aS11,2n)+a2n−1(µ0aS01,2n−1 +S10,2n−1)
]

(2.13)

= S0
0 +mS1

−1 +
∞

∑
n=1

[

a2nS0
2n +a2n−1S1

2n−1

]

, (2.14)

where Stn pn,n denotes the action in the Symanzik theory whose canonical dimension and transfor-
mation properties under T1 and P are (dn, tn,n). Here we pull out the µa factor from terms which
have odd powers in µ0a. Therefore remaining factors always have even powers in µ0a. To derive
the first equality we use the selection rules such that 0 = n+tn + pn mod(2) 0 = pn +(#µ0)n mod(2)

since the lattice action satisfies d + t + p = 0 and p+#µ0 = 0. In the second equality we define

S0
2n = S00,2n + µ0S01,2n−1, mS1

−1 = S10,−1/a, S1
2n−1 = S10,2n−1 + µ0S11,2n−2(n ≥ 1), (2.15)

and the superscript 0 or 1 denotes the transformation property under T1 as evident from the above
definition. Similarly we have

O0
lat,d = O0

d +
∞

∑
n=1

[

a2nO0
d+2n ++a2n−1O1

d+2n−1

]

, (2.16)

O1
lat,d = O1

d +
∞

∑
n=1

[

a2nO1
d+2n ++a2n−1O0

d+2n−1

]

, (2.17)

for the multi-local operator with the canonical dimension d, where again the superscript 0 or 1
denotes the transformation property under T1.

Now we can specify the condition for automatic O(a) improvement: It is stated that the con-
tinuum part of the action (2.14) is invariant under T1. This condition leads to m = 0, so that the
continuum part of the action is given solely by S0

0. We will consider the scaling behaviour of the
vacuum expectation value of an arbitrary multi-local operator, 〈Ot

lat,d({x})〉. For this purpose we
define

eStm = eS0
0 exp

{

∞

∑
n=1

[

a2nS0
2n +a2n−1S1

2n−1

]

}

≡ eS0
0

∞

∑
n=0

anS(n), (2.18)

where we define anS(n) to be the sum of the an terms in eq. (2.18). For example, the first few terms
are given as S(0) = 1, S(1) = S1

1 , and S(2) = S0
2 + (S1

1)
2/2! . Under the T1 transformation, they

behave as T1 : S(n) → (−1)nS(n) . By expanding both action and operator, we have

〈Ot
lat({x})〉 =

∞

∑
n=0

an〈Otn
n ({x})〉Stm =

∞

∑
n=l=0

an+l〈Otn
n ({x})S(l)〉S0

0
(2.19)
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where tn = n + t mod (2). In the second line the T1 invariance tells us that 〈Otn
n ({x})S(l)〉S0

0
= 0

unless tn + l = t +n+ l = 0 mod (2). Therefore we have

〈Ot
lat({x})〉 =

∞

∑
s=0

a2s+t
2s+t

∑
n=0

〈Otn
n ({x})S(2s+t−n)〉S0

0
, (2.20)

from which we derive

〈O0
lat({x})〉 = 〈O0

0({x})〉S0
0
+O(a2)+O(a4)+ · · · (2.21)

〈O1
lat({x})〉 = O(a)+O(a3)+O(a5)+ · · · . (2.22)

This proves our statement that the scaling violation of all T1 invariant operators, which have non-
zero VEV in the continuum limit, are even in a, while that of T1 non-invariant operators, whose
VEV vanish in the continuum limit, are odd in a. This is true for non-zero µ0 and does not require
the use of the equation of motion.

2.3 Condition for O(a) improvement in the lattice theory

In the Symanzik theory, the condition for O(a) improvement is uniquely defined by the condi-
tion that an arbitrary T1 non-invariant operator Ot=1 p,d has a vanishing expectation value. Provided
this condition is fulfilled, the expectation values of all T1 non-invariant operators vanish. Hence
the particular choice for O1p,d is irrelevant, and in that sense the condition is unique. In the lattice
theory, however, the condition defined by 〈O1p,d

lat 〉 = 0 depends on the choice of the operator O1p,d
lat ,

and is therefore not unique. In terms of the Symanzik theory, for this condition to be satisfied, an
equation

aF0(a
2,ma,µ0)+mF1(a

2,ma,µ0) = 0,

where F0,1 are some functions of a2, ma and µ0, must be fulfilled by tuning the untwisted mass
m. Since this equation is invariant under (m,a) → (−m,−a), the solution has the form that
m = a f (a2,µ0) under the assumption that the solution to the equation is unique. If one takes a dif-
ferent lattice operator to define the T1 invariant condition, the solution is given by m′ = a f ′(a2,µ).
Therefore the difference between two definitions is O(a): m−m′ = a( f − f ′). Note that a solution
m in general depends on µ0, inherited from the µ0 dependence of F0,1.

Let us consider some examples for the condition in the lattice theory. A simple one is given by
〈(ψ̄ψ)lat〉 = 0 . Unfortunately, this definition is not very useful in practice, since the subtraction of
power divergences necessary for 〈ψ̄ψ〉 prevents a reliable determination of this VEV in the lattice
theory. Instead one may take Olat(x,y) = Aa

µ(x)Pa(y) or Olat(x,y) = ∂µAa
µ(x)Pa(y) (a = 1,2), as

was done in Refs. [10, 11, 12]:

〈Aa
µ(x)Pa(y)〉 = 0 or 〈∂µAa

µ(x)Pa(y)〉 = 0, (2.23)

where Aa
µ and Pa denote the axial vector current and pseudo scalar density, respectively. Yet another

choice is [13]
〈A3

µ(x)P3(y)〉 = 0.

Depending on the choice for the axial vector current, either the local or the conserved one, the
conditions (2.23) lead to a different definition for maximal twist. However, the difference will be
again of O(a).

6
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We close this section with a final comment. Any condition for O(a) improvement in the lattice
theory determines a value for the bare untwisted mass m0 as a function of the bare twisted mass
µ0. It has been suggested to tune the untwisted mass to its critical value m0 = mcr where the pion
mass vanishes in the untwisted theory. However, this condition is not related to T1 invariance.
For example, contributions from excited states violate eq. (2.23) even at mπ = 0. Consequently,
the pion mass definition does not correspond to automatic O(a) improvement according to the T1

invariance condition.

3. Conclusion

In this paper we gave a comprehensive proof for automatic O(a) improvement in twisted mass
lattice QCD. The most important observation is that a precise definition for O(a) improvement is
described by the symmetry in the continuum theory. If the continuum part of the Symanzik theory is
invariant under T1 transformation, scaling violations for all quantities are shown to be even powers
in a, as long as they are invariant under the T1 transformation. Non-invariant quantities, on the
other hand, vanish as odd powers in a.

This work is supported in part by the Grants-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science and Technology. (Nos. 13135204, 15204015, 15540251,
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