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1. Introduction

Quantum Chromodynamics(QCD) allows both quarks and gluons to exist together in states
having quantum numbers that are outside of the standard quark model. In the meson sector, these
states are termed exotic hybrids, having quantum numbers such as J PC � 0

��� � 1 ��� and 2
���

. Ac-
cording to [1], experimentally established 1

���
mesons are the π1

�
1400 � and π1

�
1600 � . One expects

the lattice formulation of QCD to eventually give properties, such as masses and decay widths, of
these exotic hybrid states. Toward this end, we examine the mass spectrum of a 1

���
exotic meson

using lattice QCD data generated previously for a decay width calculation [2]. The novel feature of
this application is the use of Bayesian analysis, specifically the maximum entropy method (MEM).

The MEM offers several advantages in extracting hadron masses. First, the entire range of
lattice time slices is used, thus eliminating the subjective choice of a plateau, as is typically done
for an effective mass function. By using all time slices the MEM can deliver unbiased estimates of
the extracted masses. Second, if multiple or exited states are present, these are naturally available
with MEM. Third, one can also determine the probability of creating a certain state out of the QCD
vacuum with a particular operator. We rely on these features to extract the 1

���
exotic hybrid meson

mass spectrum, up to 	 2 GeV.

2. Lattice simulation

For this simulation we employ the same lattices and propagators used in [2]. There we ex-
pected systematic errors to dominate, and hence, kept the numerical effort modest by employing a
simple Wilson gauge field action and Wilson fermions in the quenched approximation. Results will
be presented from an anisotropic lattice of size 123 
 24 having bare aspect ratio as � at

� 2 with
as being the spatial and at the temporal lattice constants. A total of 200 gauge field configurations
were used with a global gauge coupling β � 6 � 15.

For the exotic hybrid meson, referred to as h, we require an operator with quantum numbers
I � 1 and JPC � 1

���
. Following [3] we adopt an operator of the form,

Oh  ; j

�
t � � 1�

V
∑�
x

3

∑
i � 1

d̄a
���
xt � γiub

���
xt � � Fab

i j
���
xt ��� F†ab

i j

���
xt ����� (2.1)

where a � b are color indices, V is the spatial lattice volume, and Fi j is a product of SU(3) link
matrices defined on paths forming a clover leaf in the i– j plane with center at

�
x, as described in [2].

Here the combination Fi j � F†
i j is needed for positive charge conjugation, and the clover leafs are

summed in the spatial planes only, thus representing magnetic type gluons.
Regarding charge conjugation symmetry, this can be made exact with the operator (2.1) by

using equal amounts of �U � and �U � � gauge fields. So with each �U � in the 200 configurations of
gauge fields we also compute propagators for �U ��� because both �U � and �U ��� are equally probable.
This doubles the number of propagators required, but besides making for exact charge conjugation,
it also appears to reduce noise levels in the hybrid correlator signal.

A parity transformation � applied to (2.1) gives, as required, � Oh

�
t ��� �

1 � � Oh

�
t � . This

relies on � Ui

���
x � t ��� �

1 � U �
i

� � �
x � t � for i � 1 � 2 � 3. Because the quenched gauge field action S �U �

satisfies � S �U ��� �
1 � S �U � only in the limit of a large number of gauge field configurations, the
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κ at mπ mπ � GeV �
.140 .50(1) 1.39(3)
.136 .60(1) 1.67(3)
.132 .71(1) 1.97(3)
.128 .82(1) 2.28(3)

Table 1: Hopping parameter values κ and resulting pion masses using units of the temporal lattice constant
at , and in GeV, for a 123 � 24 lattice.

propagator for h only respects exact (negative) parity in the limit of a large number of gauge fields.
Otherwise it’s parity is only approximate. Thus, by using only 200 gauge fields, one can expect
some contamination from the wrong (positive) parity state. This becomes evident in the discussion
of results.

Wuppertal style smearing is done on the quark fields, using APE style gauge link fuzzing in the
process. We use a common strength factor (α � 2 � 5) and either 1 � 2 � and 3 smearing iterations. The
same smearing is done at source and sink points. A total of nine combinations of these iterations are
possible, and in this way, the correlation function expands to a 3 
 3 hermitian matrix Ch

�
t � t0 � 3 � 3

with elements

Ch � k � l �
�
t � t0 � ��� Oh � k �

�
t � O†

h � l �
�
t0 ����� � Oh � k �

�
t ��� � O†

h � l �
�
t0 ����� (2.2)

Here the separable terms are zero due to choice of flavor structure (2.1), and the number of smearing
iterations is denoted with k � l � 1 � 2 � 3. Similar matrices are constructed for π � ρ and a1 meson
correlators. To keep elements of the correlation matrix at the same magnitude, a rescaling is done
after each smearing step [4].

Four Wilson fermion hopping parameters, κ � 0 � 140 � 0 � 136 � 0 � 132 � 0 � 128, were used with a
multiple mass solver [5]. Pion masses for each κ value are shown in Table 1. Extrapolations to
mπ

� 0 are done for the hybrid, a1, and ρ mesons using the three parameter model,

M � p 	 qx 	 r ln
�
1 	 x � with x � �

at mπ � 2 � (2.3)

where M � at m is the spectral mass for each meson and p � q � r are parameters. This model matches
most of the energy-versus-m2

π data produced in this work. Its choice is purely empirical. Setting
the physical scale to the ρ meson mass results in a lattice constant of at

� 0 � 07
�
1 � fm.

3. Analysis

Time evolution of the eigenvalues of CX

�
t � t0 � determines the mass spectrum of the meson X ,

where X is h, a1, ρ , π . We choose to diagonalize CX

�
t � t0 � directly, using singular value decompo-

sition (SVD). The SVD gives,

CX

�
t � t0 � � UX

�
t � t0 � ΣX

�
t � t0 � V †

X

�
t � t0 � � (3.1)

where UX

�
t � t0 � and VX

�
t � t0 � are unitary in our case, and ΣX

�
t � t0 � � diag

�
σX ;1

�
t � t0 ������� σX ;K

�
t � t0 ���

contains the singular values satisfying σX ;k

�
t � t0 ��
 0. If CX

�
t � t0 � is non-degenerate and positive

3
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Figure 1: Eigenvalues k � 1 � 2 � 3 of the 3 � 3 correlation matrix CX

�
t � t0 � for the hybrid meson X � h, at

the smallest pion mass. Error bars are statistical, derived from a jackknife procedure. The lines are MEM
fits as explained in the text.

semi-definite then the set of eigenvalues � λX ;k

�
t � t0 ��� k � 1 ����� K � and singular values � σX ;k

�
t � t0 ��� k �

1 ����� K � are the same.
In Fig. 1 we show all eigenvalues, σk

� λk, of CX

�
t � t0 � K � K for the hybrid meson operator,

X � h, K � 3, computed at the smallest pion mass, i.e. the largest κ value. Diagonalizing is done
independently on each time slice. Note that the eigenvalues are separated by almost three orders of
magnitude.

The lattice provides correlation function data, say σ
�
t � , denoting any set σX ;k

�
t � t0 � on the

chosen time slice range t � 2 ����� 22. Our data should be well described by the spectral model

F
�
ρ � t � ��� ∞

0
dω ρ

�
ω � cosh

�
ω
�
t � tc ��� � (3.2)

where tc � 12 and ρ
�
ω � is a spectral density function. To compute F

�
ρ � t � given σ

�
t � we use a

conditional probability distribution function P � ρ 	 σ � with,

P � ρ 	 σ � ∝ P � σ 	 ρ � P � ρ � � (3.3)

Here P � σ 	 ρ � is known as the likelihood function, and P � ρ � is the Bayesian prior [1, 6]. We
construct P � σ 	 ρ � from the χ2-distance between the data and the model

χ2 � ∑
t1 � t2

�
σ
�
t1 ��� F

�
ρ � t1 ��� Γ

�
1 � t1 � t2 � � σ �

t2 ��� F
�
ρ � t2 ��� � (3.4)

with Γ
�
t1 � t2 � being elements of the covariance matrix. Then P � σ 	 ρ � � exp

� � χ 2 � 2 � is the choice
for the likelihood function. For the Bayesian prior we employ the Shannon-Jaynes entropy [7],

S �
� Ω

0
dω � ρ

�
ω ��� m

�
ω ��� ρ

�
ω � ln

ρ
�
ω �

m
�
ω �� � (3.5)
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Figure 2: Spectral density functions (thick histogram lines) for the first (largest) eigenvalue set σh � k, k � 1,
of the hybrid meson correlation matrix. The four panels correspond to increasing pion masses (decreasing
hopping parameters κ) from left to right and top to bottom. The envelop histograms (dotted lines) indicate
standard errors from 16 random starts. Gaussian fits are also shown (solid lines).

Here Ω is a cutoff energy, and the function m
�
ω � is called the default model. The idea then is to find

a spectral density function ρ which maximizes P � ρ 	 σ � , the posterior probability, at a fixed data
set σ

�
t � . This problem is then solved by simulated annealing. Put in terms of a partition function

ZW ,

ZW
��� � dρ � e � βW W

�
ρ � with W � ρ � � χ2 � 2 � αS � (3.6)

this involves generating equilibrium configurations � ρ � while gradually increasing βW from an ini-
tially small value, following some annealing schedule [6, 4].

Discretization of the ω integrals in (3.2) and (3.5) is required. We choose at ∆ω � 0 � 05 and
at Ω � 2 � 4 for the spectral mass cutoff in (3.5). The default model is a constant function m

�
ω � �

10
�

6a
�

1
t for all data sets σX ;k, and the entropy strength α is slightly adjusted, in each case, to keep

the ratio of αS to χ2 � 2 between 0.1 and 0.01, for the final ρ
�
ω � . The parameter α , however, may

be varied by several orders of magnitude without significantly effecting the results [6].
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Figure 3: Plots of spectral meson masses versus the squared pion mass x �
�
atmπ � 2 and fits with the model

(2.3). Solid lines refer to masses from primary (n � 1) spectral peaks, and dashed lines to secondary (n � 2)
peaks, see Tab. 2. The extrapolation of the ρ meson mass to x � 0 is used to set the physical scale.

The spectral density functions for the first eigenvalue σh;1 of the hybrid meson correlation
matrix are displayed in Fig. 2. Gaussian fits to ρ

�
ω � are used to resolve all of the spectral peaks

in this work. Once the spectral peaks are known, they are then plotted versus x � �
at mπ � 2, and

extrapolations to x � 0 are attempted using the model (2.3). Results of these extrapolations are
shown in Fig. 3 and in Tab. 2. A total of five spectral levels were uncovered for the hybrid meson
h. Two eigenvalues of Ch

�
t � t0 � 3 � 3 had two spectral peaks each, and the third eigenvalue had only

one peak, for each pion mass used.

4. Discussion of results

We note, first, that the a1 meson mass in Tab. 2 is very close to the experimental value 1230
MeV, which is the mass of the a1

�
1260 � meson [1]. This leads us to believe the extrapolating

model (2.3) is adequate, and therefore, the extrapolated results for the h mass spectrum, in Tab. 2,
may also be accurate. Second, the levels X � k � n � for h � 1 � 1 � and h � 2 � 1 � in Tab. 2 are close to the experi-
mental masses 1376 MeV and 1653 MeV of the 1

���
resonances known as π1

�
1400 � and π1

�
1600 �

in Ref. [1]. Third, the level h � 3 � 1 � coincides with the one generated by the a1 meson operator, es-
pecially at the three higher pion masses. This level comes from a correlator eigenvalue about four
orders of magnitude less than the dominant one. It may, because of the limited number of gauge
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X k n at EX at∆X EX [GeV] ∆X [GeV]

ρ 1 1 0.28(04) 0.08 0.7785 0.22
a1 1 1 0.45(06) 0.17 1.23(0.17) 0.47
h 1 1 0.52(19) 0.37 1.43(0.53) 1.03
h 1 2 0.79(37) 0.65 2.19(1.03) 1.80
h 2 1 0.59(04) 0.27 1.63(0.12) 0.76
h 3 1 0.34(05) 
 0.20 0.94(0.13) 
 0.55
h 3 2 0.84(07) 0.11 2.32(0.18) 0.30

Table 2: Extrapolated spectral masses EX and peak widths ∆X , for mesons X � k � n � . The eigenvalue label is k
and the spectral peak number is n. The values for ∆X and for the uncertainties (in parentheses) are obtained
by randomization of the data points, as explained in [4].

fields used, single out the positive parity 1
���

contamination of the lattice signal, which happens to
be the quantum numbers of the a1 meson [1]. Lastly, the largest levels h � 1 � 2 � and h � 3 � 2 � in Tab. 2
point at a mass somewhat above 2 GeV. We speculate that at least one of these levels coincides
with the 1

���
resonance at 1.9 GeV uncovered in Ref. [2], where the space of operators was larger,

including a πa1 two-hadron field in addition to h, which could be the cause of a lowering of the
energy level from 	 2 GeV to 1.9 GeV. This state could be a mixture of a hybrid meson and a
two-meson state, thus supporting the outcome of Ref. [2].

5. Summary

Using the maximum entropy method, five distinct spectral levels have been uncovered for the
JPC � 1

���
exotic meson. Two of the spectral levels correspond with the π1

�
1400 � and π1

�
1600 �

from [1]. Two more levels possibly correspond with a resonance energy of 1 � 9 GeV previously
determined by a decay width calculation [2]. The fifth spectral level, a consequence of inexact
parity symmetry, tracks consistent with an operator representing the a1

�
1260 � meson.

All of these spectral levels rely on extrapolations to mπ
� 0 from relatively heavy pions. Al-

though this may give rise to large systematic errors, the fact that the a1 extrapolation came very
close to its experimental value leads us to conclude at least two spectral levels for the 1

���
exotic

meson will be below 2 GeV.
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