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1. Introduction

We performed simulations for21 light flavors Lattice QCD with the fixed-point Dirac oper-
ator. The (parametrized) fixed-point operator we use approximatiaébfies the Ginsparg-Wilson
relation [1]:

Dys+ 5D = Dw2RD, (1.1)

and is limited to a hypercubg][2]. (HeReis a non-trivial local matrix.) The quark mass is intro-
duced by

D(m):D~|—m<21R—;D>. (1.2)

The fixed-point action gave very promising results in the quenched sippation, in particular
good scaling even &= 0.15fm [3,[4]. We tuned the coupling in our full QCD simulation to be
close toa = 0.15fm [B], and measurement of the Sommer parantgtgave a result in agreement
with this value. We simulate two lattices, of siz&:824 and 12 x 24 at this coupling. The results
presented here refer to the smaller lattice.

2. Autocorrelation times

We estimated the autocorrelation time of plaquettes built from smeared links draf tha
pseudoscalar-pseudoscalar correlator. We are using a globakeuBdlathe configurations are
separated by 0.7 standard Metropolis sweeps.

Fig.[1 shows the MC history for the plaquette for a longer run and the augdaton function
extracted from it. This gives an autocorrelation tirge~ 40.

In Fig.[2 we plot the autocorrelation function for the zero-momentRi0)P(t)) correlator at
different time separatiorts The autocorrelation time for this quantity is estimated to be somewhat
higher.
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Figure 1. MC history for the smeared plaquette and the corresponditaarrelation function.
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Figure 2: The autocorrelation function for th&(0)P(t)) correlator at different values.

3. Thedeltaregime
The epsilon regime is defined by:

mpsl, mpglg <1, (3.1)

and the box size should be large enought-R >> 1, for the validity of chiral perturbation theory.
Herempsis the pseudoscalar mass in infinite volume.

In the delta regime[[6] one considers a lattice under similar conditions butatkmgn the
time direction so that the low-lying spectrum in the corresponding spatial vatambe measured.
In this regime, for two massless quarks, the low lying spectrum is given @(&protator having

in leading order in 1L a mass gap
3
= 3.2
Meft = 5213 (3.2)
Note, however, that for our box size bf= 1.2fm one expects non-negligible corrections to this

leading order resul{]7].

4. Low-mode averaging

We used the method of low-mode averagifp [[8]9, 10] to decrease theirrtioe zero-
momentum meson correlators

, (4.2)
t=xa—ya

Cty) = <Ztr (rlvf,G(x,y)*vsrzG<x,y>)>
X

wherel 1, I, are arbitrary Clifford algebra matrices. As part of our updating algoritencalculate

the low-lying eigenvalues and their corresponding eigenvedipors [5hwtiows us to perform such
averages. For the’8 24 lattice we stored 48 eigenvectors with the smallest eigenvalues. We split
up the correlator in Eq[(4.1) into three parts:

C(t;y) = Cii (t) +Cin(t; Yo) +Chn(t;y), (4.2)



First results in QCD with 2+1 light flavors using the fixed-pbaction Dieter Hierl

L L l P L
0 100 200 300 400

# confs

Figure 3: The zero-momentuniP(0)P(t = 5)) correlator measured at fixed source positiGg){ by using
the eigenvectors to average the source position over théeudttice in the low-low part@;); by averaging
in the source position over a time-slice in the low-high pertvell Cy).

wherel refers to the low-mode pa@ (x,y) of the quark propagator (which is given by the calcu-
lated eigenvalues and eigenvectors), Atalthe rest of the propagat@(x,y) = G (x,y) + Gn(X,y).
We analyze the effects of low-mode averaging@gprandC;, separately.

On Fig[ we compare the zero momentum correldBD)P(t)) at time separation= 5 for
the different amounts of averagingy is the correlator without any averaging over the source
position,C; is when thel part is averaged over the whole volun@,is when in addition thé¢h
part is also averaged over a time slice. While ithaveraging is very effective, thé averaging
barely shows any suppression of the fluctuations. Since the latter one imais expensive, one
can safely ignore this option and average only inlthgart.

5. Resaults

5.1 The PCAC mass

Because we are using the parametrized fixed-point action which solvE&srthparg-Wilson-
eqguation only approximately we get an additive mass renormalization for@dCPnasses. The
size of this mass shift is an indicator for the quality of our approximation. Hpogliminary
runs [$] we estimated this additive mass renormalization to be aro@® ®We ran the present
simulations with lattice quark massas,q = 0.025,am; = 0.103. To determine the actual additive
mass renormalization we calculated ratios

(0105 A5°(t)Pba(0)[0)
2<O‘Pab(t)Pba(0)’0> ’
For both correlator functions we used low-mode averaging and fouliedefned plateaus, typ-
ically beyondt ~ 5. These we denote byfV'. Plotting V! againstmg = (m, + m,)/2 and

Pan(t) =

a,b=u,d,s. (5.1)
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Figure 4: Left: The chiral extrapolation af™! (my) using the combinations ud, us, and ss for the quark
flavors. We find an additive mass renormalizatioraot) = 0.01962) and a renormalization constant of
Z =0.88377). Right: The low-lying eigenvalues of the massive Dirac operatomfoy = 0.025. The red
line shows the quark mass with this mass shift subtractes|,, = any — amy.

extrapolating inmy to ™! = 0 we obtain the mass shifity. Using naive currents, i.e. the non-
conserved axial-vector current in the enumerator and the pseudoden#ity in the denominator
of Eq. (5.1), we also get a multiplicative renormalization fa&or

Wi _

b =Z(Mg—Mo), rm=;%+wy (5.2)

As seen on the left hand side of Fig. 4 the actual values are describgdve# by this linear
dependence. We also plotted on the right hand side of Fig. 4 the 48 lowdigagvalues we stored
for several of our configurations withm, = 0.025 on our 8 x 24 lattice. We find that they are lying
approximatively on a Ginsparg-Wilson circle shifted by the subtracted amagg = am, —anmy =
0.00542) (corresponding to .2(4)MeV) away from R& = 0 (red line). The subtracted lattice
mass for the strange quarkasy — amy = 0.083, corresponding te 110 MeV.

5.2 Effective masses

For the point-like pseudoscalar densRy= Py we calculated the zero-momentufiRP)
correlator for three different quark flavor combinations (uu,us,sd8)fannd very stable effective
mass plateaus shown in F[g. 5.

Linear chiral extrapolation (J'hgff in my to the chiral limit, shown in FigﬂG, gives:

(am)(mo) = 0.367(6) . (5.3)

Using the finite volume mass gap in lowest order of chiral perturbation théayy(3:2), this
leads toF = 92.7(4) MeV which agrees with the physical value of the pion decay conskant
92.4MeV. However, this agreement is presumably accidental, since the spdéat of our small
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Figure 6: The chiral extrapolation in the pseudoscalar channel. Weygalate(am)? linearly in any —
am.

lattices is uncomfortably small, and sizeable corrections to the leading omlgtr o€Eq. (3.p) are
expected.

6. Summary and Outlook

We calculated the autocorrelation for thex824 lattice and found autocorrelation times~
40 for plaquettes on smeared links angd~ 80 for the (PP) correlation functions at fixed time
distances.

In the measurement of the meson correlators the low-mode averaging uvasttbimprove
the signal significantly. Since the low-lying eigenmodes of the Dirac opevatog available on
each configuration from our updating, this did not require extensingoding resources.

We determined the additive mass renormalization and verified that our lighk masses are
near to the chiral limit. We found that the AWI mass depends nearly linearlyooavdrage of the
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corresponding lattice quark masses. We found that the eigenvalues liednapproximation on
the shifted Ginsparg-Wilson circle.

For the pseudoscalar spectrum we obtained the finite volume mass gap inrdidirctit.
Comparing it to the lowest order theoretical prediction we obtained a valuthdéolow energy
constantF. The surprising agreement with the physical value is presumably an atcithee
finite volume effects could be quite large at this lattice size.

In the near future we will also have access to larger lattices, on which wetplanalyze
conserved current$§|[4] and all-to-all propagatr$ [I]L, 12].
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