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rations. The calculation is performed using the 3-parameter, relativistic heavy quark action with
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bles generated for three different lattice spacings.
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1. Introduction
Flavor physics and CP violation play an important role in particle physics. Lattice QCD pro-

vides a first-principles approach for probing these interesting physics topics starting from the Stan-
dard Model. However, in the application to heavy quark physics,(ma)¿ 1 is no longer true and
(ma)n terms become significant. Becausea must be made very small, direct simulation of heavy
quarks by brute force becomes too expensive. Thus, an effective theory is needed to carry out the
calculation. There are multiple fermion actions being used in lattice calculations; see reviews in
Refs. [1, 2, 3].

In this work, we will concentrate on the effective theory called relativistic heavy quark (RHQ)
action [4, 5, 6, 7], as

S = ∑
n

ψn

{
m0 + γ0D0− 1

2
aD2

0 +ζ
[
→γ ·→D− 1

2
a
(→
D

)2

]
−∑

i

i
4

cPaσµνFµν

}
ψn. (1.1)

We specifically use the formulation proposed in Refs. [6, 7]. The main idea is that in the heavy
quark case, the temporal covariant derivativeD0 is around the order ofmaand should not be treated
the same way as the spatial derivativesDi ; we refer to this method as “RHQ” power counting.
Following the Symanzik improvement procedure, we found that there are only three necessary
parameters in the action:m0, ζ , cP. The advantages of using this action are that it

• Systematically absorbs mass factors into the coefficients

• Has small cutoff effects:(ΛQCDa)2 for heavy-light systems and(αsma)2 for onium systems

• Goes to Sheikoleslami-Wohelert (SW) action whenma¿ 1 and Non-Relativistic QCD when
maÀ 1

In high-precision calculations, we must first determine the correct action parameters before using
the action to calculate observables. Since perturbation theory introduces error into our parameter
calculation, a nonpertubatively determined action is important.

2. Nonpertubatively determined RHQ action
There are various ways of determining the action coefficients. One approach that has been

widely used is lattice perturbation theory. However, unlike continuum perturbation theory, LPT
does not converge quickly, and it has errors that are hard to control. Another approach is to tune ac-
tion parameters by matching physical observables sensitive to particular parameters to their known
experimental values. However, we would lose some of the predictive power of our theory. Last but
not least, we may use a step-scaling technique[8]; instead of using brute force to directly simulate
the heavy quark on a fine lattice (wherema¿ 1) in a large box, we connect fine lattices with small
physical volumes to coarser lattices with larger physical volumes, as shown in the Figure1. This is
computationally much cheaper than the brute-force calculation.

We can apply the step-scaling technique to determine the coefficients in the action by using
1. off-shell quantities: The quark-gluon vertex is a candidate for determining the coefficients

coupling to the Sheikholeslami and Wohlert term. We will be able to use the off-shell im-
provement to determine not only the coefficients in the action, but also theO(a) off-shell
improvement coefficients in the quark field, which allows us to apply nonperturbative renor-
malization (NPR) directly[9, 10]. However, this requires many more parameters to be deter-
mined numerically and involves subtle, gauge–non-invariant terms to be added to the action
and operators.
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Figure 1: The sequence of lattice sizes and lattice spacings used to determine the coarse-lattice heavy quark
parameters through a step-scaling technique beginning with a comparison with anO(a)-improved light quark
calculation: The matchings between the top four lattice spacing-volume combinations are described in this
work.

2. on-shell quantities: We use mass combinations of pseudoscalar (PS), vector (V), scalar (S)
and axial-vector (AV) mesons in heavy-heavy (hh) and heavy-light (hl) systems computed in
fixed, finite volume[11].

(a) spin-averaged:mhh
sa = 1

4

(
mhh

PS+3mhh
V

)
, mhl

sa= 1
4

(
mhl

PS+3mhl
V

)

(b) hyperfine splitting:mhh
hs = mhh

V −mhh
PS, mhl

hs = mhl
V −mhl

PS

(c) spin-orbit averaged and splitting:mhh
soa= 1

4

(
mhh

S +3mhh
AV

)
, mhh

sos= mhh
AV −mhh

S

(d) dispersion relation:E2 = m2 +c2p2.

The simulation was carried out on a QCDOC 512-node machine at 420 MHz clock frequency.
We used quenched Wilson gauge action with the heatbath algorithm, taking 20,000 sweeps for
thermalization and measuring 100 configurations at 10,000 sweeps separation. Coulomb gauge-
fixed hydrogenic source smearing is used to improve overlap with ground states. We use a linear
ansatz relating the action coefficients (XRHQ) and the corresponding measurements (Yi,d

coarse):

Yi,d
coarse = Ad + Jd·Xi

RHQ, (2.1)

whereJ andA can be obtained from either fitting parameters or using finite differences directly
from a Cartesian set. These two approaches agree within errors. The detailed choices of parameters,
lattice spacing determinations and analysis can be found in Ref. [11, 12]. The RHQ coefficients for
thea−1 = 2.4 GeV lattice, after two stages of matchings starting from thea−1 = 5.4 GeV lattice,
are

cP(m0) = 1.65(3)+0.12(6)m0 +1.06(4)m2
0

ζ (m0) = 1.090(10)+0.318(16)m0−0.092(10)m2
0.

We simulate at three charm quark points from the RHQ coefficients,(X(3)
C )T = {m0,cP,ζ}=

{−0.06106, 1.651, 1.070}, {0.02173, 1.653, 1.097}, {0.1086, 1.686, 1.122} respectively. The
spin-averaged mass (m1S = [mηc + 3mJ/Ψ]/4) is used to determine the bare charm quark mass.
Figure2 shows a summary of our results along with the experimental values, with statistical errors
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Figure 2: The spectrum of the charmonium system:
The circles are our results with statistical errorbars
and the horizontal lines correspond to experimental
values.
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Figure 3: A summary of hyperfine-splitting cal-
culations with quenched approximation using RHQ
action.

only. All P-wave masses are within one standard deviation higher than the experimental one.
The spin-orbit splitting is 54(33) MeV, similar to what we observed in the past; it is a difficult
quantity to determine precisely. The hyperfine splitting is 77.8(15) MeV, about 40% smaller than
the experimental splitting (116 MeV). The hyperfine splitting is typically not given correctly in
lattice calculations. A list of quenched hyperfine splittings calculated from RHQ lattice QCD is
given in Figure3. The hyperfine splitting from the one-loop Tsukuba approach[13] ranges from
75.7 to 64.6 MeV using a fixed volume of(1.8 fm)3 with lattice spacing varying from 0.0562 to
0.112. Our hyperfine splitting at the same lattice spacing is about 10% higher than the one-loop
quenched result[13], which is encouraging. We might be able to resolve the hyperfine splitting
problem when we apply our nonperturbative approach in a full-QCD calculation.

For the excited states, we use an additional smearing function on the heavy quark field,

Ψexc(r) = (1− r/2r0)e−r/2r0, (2.2)

to improve the overlap with excited states. Then, we perform a four-parameter double-cosh fit to
extract the ground and excited states. The radial excited states from our low-statistics data appear
consistent with experiment, as does the2S−1Ssplitting. This measurement can be easily improved
with more configurations and a constrained fit.

So far in this discussion, we have been taking the lattice spacing from the static quark potential
with scale determined by Sommer scaler0 = 0.5 fm from phenomenological models. We could also
determine the lattice spacing using the1P−1Ssplitting in the charmonium system. Here we adopt
the singlet1P state,mhc, for the1P mass. Recalculating the bare charm quark mass and the lattice
spacing, we getamc = 0.15599(14) anda−1 = 2.24(14) GeV. This suggestsr0 = 0.534(33) fm.
This is close to what we assumed in the previous scale determination. From the statistics we have,
we do not observe problems due to determining the lattice spacing in this calculation. Thus, we
will continue usea−1 = 2.4 GeV for the rest of this work.

Fortunately, because of our step-scaling procedure, we are able to calculateZlat
m in RI/MOM

scheme[9] using DWF on the fine lattice and to include an estimate of finite-mass effects (∼ (amh)2)
in the systematic error for the final calculation. We calculate the quark propagator and we expect
that in the large-momentum region the scalar part of the quark propagator behaves like[14]

1
12

Tr(S−1
L (p)) = C× p2 +ZmZq(m+mres)+

B
p2 +O(p−4). (2.3)

When this equation is evaluated, we find the renormalized massmRI
c = 1.124(9) GeV in RI/MOM
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Figure 4: The spectrum of the charmonium sys-
tem from NP RHQ in full QCD: The blue, pur-
ple and green correspond to lattices withamsea=
0.01,0.02,0.03 respectively, and the horizontal
lines correspond to experimental values.
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Figure 5: A comparison of hyperfine-splitting from
our amsea= 0.01 and from MILC 2+1 dynamical cal-
culations.

scheme. We matched RI/MOM scheme toMS scheme and obtained the renormalization-group–
invariant mass[15], mRGI = 2.401(21) GeV. We find at the scale of averagedmc, our renormalized
charm quark mass is1.314(11) GeV. This statistical error is determined by applying the jack-
knife method to the supercoarse statistical ensemble and then inflating the result by a factor of√

3 to include the statistical errors introduced at the other two matching stages; thus,mMS
c (mc) =

1.314(18) GeV.

3. Full QCD

The RBC and UKQCD collaborations have generated 2+1 flavor dynamical DWF ensembles,
at fixed lattice spacinga−1 ≈ 1.6 GeV (set by Sommer scale 0.5 fm), with two volumes,≈ 23 and
33 fm3, using Iwasaki gauge action (β = 2.13). The up and down sea quark mass in terms of the
inverse lattice spacing are 0.01, 0.02 and 0.03 with the strange quark mass set to 0.04. We first
apply the NP RHQ coefficients directly on 2+1-flavor dynamical configurations to check out the
heavy-heavy sector of charm physics, where the small volume lattice is sufficient. The results are
shown in Figure4 for three different sea quark masses, labeled by blue, purple and green as the
mass increases, with statistics of 75 configurations. First, we can see that there is an instant boost in
the value of the hyperfine splitting between quenched lattices and dynamical ones, and theP-wave
states all agree with the experiment values within statistics error bars. In Figure5, we compare our
hyperfine splitting with the calculation obtained from MILC[16]. Since MILC and RBC/UKQCD
use different reference scales, Sommer scaler0, to set the lattice spacing and the hyperfine splitting
is sensitive to this reference scale, we plot the dimensionless quantity (the product of hyperfine
splitting andr0) as a function ofa/r0. We noted that even though our lattice is coarser than the
MILC ones, our hyperfine value is consistent with their finest point. This is a very encouraging
result to test on our NP coefficients. However, since the gauge actions used in the quenched and
dynamical simulations are not matched, there might beO(a2) effects in the gauge action. Thus,
our hyperfine splitting can be further improved if we carry out the NP RHQ project dynamically.

Carrying out a step-scaling calculation in full QCD is very expensive and time-consuming; in
the meantime, we can match the RHQ coefficients on the RBC/UKQCD full QCD lattices to the
experimental charmonium spin-averaged mass and spin-splitting mass and dispersion relation. This
is accurate through|→pa| and to all order of(ma)n. Therefore, we can immediately start studying
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Figure 6: (Left) The spectrum ofDs on themsea=
0.01ensemble withmstrange= 0.04.
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Figure 7: (Right) The spectrum ofD on themsea=
0.01ensemble withmup,down = 0.01.

other charmed states, such as charmed baryons, charm-light systems, charmonium excited states
(including exotic ones). We first demonstrate on our smallest sea quark mass configurations; we
obtained coefficients in the action

XRHQ = {m0,cP,ζ}= {0.46(4),2.50(9),1.285(19)}. (3.1)

Again, the bare charm mass is set by the experimental charmonium spin-averaged mass. We use
126 configurations. Due to time constraints, here we only obtain results for the charm-light system,
as shown in Figure6 and7. Both spectra are consistent with experimental values. TheS-wave
splittings are:

mD∗−mD = 154(16) MeV

mD∗s −mDs = 153(7) MeV,

which are consistent with the experimental values of 142 MeV and 144 MeV respectively.

4. Conclusion

In this work, we have shown that the three coefficients (m0, cP andζ ) for the RHQ action
can be determined nonperturbatively with step scaling. We demonstrate some interesting quenched
physics with improvement of the hyperfine splitting in charmonium. It also allows us to determine
the charm quark mass:mMS

c (mc) = 1.314(18) GeV, without complicated off-shell improvement on
the RHQ action. This makes future application to full QCD feasible. The direct application of
NP quenched coefficients to dynamical configurations gives promising charmonium features such
as better hyperfine splitting than existing dynamical results. We further tune the RHQ action with
experimental numbers and produce promising results for the charmonium and charm-light systems.
In the near future, we would also like to calculate more meson states involving derivative operators
(including exotic ones) and also to study charmed baryons masses. It should also be easy to apply
this method to theB system. In the long term, we would like to carry on the step-scaling technique
first to the NP determined RHQ action in full QCD and then to decay constants and form factors
involving one or two heavy quarks with RI/MOM NPR.
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