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1. Introduction

In meson spectroscopy, many symmetry channels can be easilyexplored by the use of extended
operators that spatially separate the quark and antiquark.The possible gluonic paths connecting
the pair give access to a new range of symmetry channels otherthan those achieved using only
gamma matrix operations [1] and allows us to construct a large variational basis of operators.
Unfortunately, the introduction of the gauge fields into theoperator give rise to large fluctuations
over an ensemble of gauge backgrounds. The use of all-to-allpropagators is necessary to exploit
translational invariance, utilise all information contained in the gauge fields and reduce the effect
of these fluctuations in correlation functions.

As well as offering a method for high-accuracy measurementsof isovector mesons, the prac-
tical all-to-all propagator scheme of Ref. [2] provides a framework to study isoscalar states in
detail. The isoscalar mesons of QCD remain poorly understood phenomenologically. In particular,
theJPC = 0++ sector contains a range of experimentally observed resonances that are difficult to
interpret unambiguously in a quark model picture. These states have proved difficult to investigate
in lattice simulations, since they require the calculationof disconnected correlation functions of
quark propagators, that are inaccessible to the usual pointpropagator method of lattice QCD. The
disconnected correlation functions, like those of the extended operators, suffer from having large
fluctuations over an ensemble of gauge backgrounds.

Here, we present preliminary results from an investigationinto the statistical accuracy achie-
veable using this method for a wide range of states in isovector channels. We evaluate the low-lying
eigenmode dependence of correlation functions for some of these channels and also look at the 0++

andη ′ isoscalar channels.

2. The all-to-all propagator

In order to investigate correlation functions of all symmetry channels of isovector and isoscalar
mesons, access to all entries of the quark propagator is desirable to exploit the self-averaging effects
of translational invariance and allow the straight forwardimplementation of extended operators.
Many algorithms to compute or estimate these have been devised, for example see Refs. [3, 4]. In
this work, we utilise an exact implementation which employsa hybrid method that combines an
eigenvector decomposition with a variance-reduced stochastic estimator [2].

To construct the all-to-all propagator, the lowestNev eigenmodes of the hermitian Dirac matrix
Q= γ5M are first computed, and a truncated spectral decomposition of the propagator is then given
by

Q̄0 =
Nev

∑
i

1
λi

v(i) ⊗v(i)†
. (2.1)

If Nev is equal to the dimension of the matrix, then̄Q0 = Q−1, otherwise the propagator can be
expressed as

Q−1 = Q̄0+ Q̄1 , (2.2)

and the truncation in the eigenvector representation can becorrected by estimatinḡQ1 stochasti-
cally. To construct a stochastic estimate of the inverse of amatrix,A, an ensemble of random noise
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vectors,{η[1], · · · ,η[NR]} with the property

〈〈η(x)⊗η(y)†〉〉 = δx,y , (2.3)

where〈〈. . .〉〉 denotes the ensemble average, is generated. The solution vectors,ψ[R](x)= A−1η[R](y),
can then be computed, typically using a conjugate gradient algorithm, andA−1 is estimated from

A−1 ≃ 1
NR

NR

∑
R

ψ[R]⊗η†
[R]

. (2.4)

If we let X(x,y) = η(x)η(y)†, the variance of the trace of the matrix inverse due to the stochastic
estimation is essentially composed of two summations [5],

Var
[

Tr(A−1X)
]

≡ 〈〈|∑
x,y

A−1(x,y)X(y,x)−Tr(A−1)|2〉〉

= ∑
x6=y

(

〈〈|X(y,x)|2〉〉|A−1(x,y)|2 +A−1(x,y)A−1(y,x))†〈〈(X(x,y))2〉〉
)

+∑
x
〈〈|(X(x,x)−1|2〉〉|A−1(x,x)|2 . (2.5)

The action of the matrix to be estimated,Q̄1, can be implemented by noting that

Q̄1 = P1Q−1 , (2.6)

whereP1 is a projection operator onto the vector space orthogonal totheNev eigenvectors, so

P1 = 1−P0 = 1−
Nev

∑
i

v(i) ⊗v(i)†
, (2.7)

and the action ofP1 is equivalent to Gram-Schmidt orthogonalisation with respect to the computed
eigenvectors.

For accessible numbers of eigenvectors, the stochastic estimator in its simplest form is noisy.
We choose to “dilute” the noise vector, which results in rapid variance reduction. In this context,
dilution means creating a set of noise vectors by applying a set of masks to a single noise source.
These masks might for example select a particular time-slice of the vector (referred to as time
dilution), thus returningNT noise vectors from each single noise source.

One can then decompose the ensemble of noise vectors into each of theNdil dilution subspaces,
η[i] = ∑Ndil

r=1η (r)
[i] , yielding an ensemble,

{

{η (1)
[1] ,η (2)

[1] , · · · ,η (Ndil)
[1] },{η (1)

[2] ,η (2)
[2] , · · · ,η (Ndil)

[2] }, · · · ,{η (1)
[NR],η

(2)
[NR], · · · ,η

(Ndil)
[NR] }

}

. (2.8)

Additional to Eqn. (2.3), the subspace dilution now implies

η (r)(x)η (t)(y)† = X(r,t)(x,y) = X(r,r)(x,y)δ (r,t) (2.9)

even before expectation values are taken. In Eqn. (2.5), we can see that dilution will, therefore,
reduce the first summation,∑x6=y, to a sum wherex andy are in the same dilution subspacebefore
expectation values are taken. This reduction in the summation is true for any white noise and in the
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homeopathiclimit of Ndil = N dilution subspaces this first sum is automatically zero since x andy
can no longer be in the same dilution subspace. The second sumis proportional to the square of the
diagonal error only, forZ(N) noise this error is zero and we have zero variance in the homeopathic
limit.

In principle, the method of dilution can be optimised to reduce the variance. Time dilution
has been seen to be crucial and leads to an exponential error reduction. While the variance falls
off more rapidly than 1/

√
N for all further dilutions, little dependence on the detailsof this further

dilution has been observed in simulations performed to date.

3. An efficient implementation

The method can be implemented efficiently in software by use of a “hybrid list” method. Two
lists ofNHL = Nev+Ndil vectorsu andw are written,

w(i) =

{

v(1)

λ1
, · · · , v(Nev)

λNev
,η (1), · · · ,η (Ndil)

}

(3.1)

u(i) =

{

v(1), · · · ,v(Nev),ψ(1), · · · ,ψ(Ndil )

}

, (3.2)

Then the inverse ofM is written as a single sum over the pair of lists

M−1 =
NHL

∑
i=1

(u(i) ⊗w(i)†)γ5 . (3.3)

To compute a two-point correlation function for an isovector meson requires two further steps.
Pairs of hybrid lists from two independent noise sources,r ands, are combined to form anNHL ×
NHL matrix oroperator field,

O
(i, j)A
[r,s] (t) = w(i)∗

[r ] (t)γ5ΓAu( j)
[s] (t) , (3.4)

whereΓA is an operator on a time-slice that creates a meson with the desired quantum numbers.
This stage of the construction is the only point where this operator is invoked, and so an efficient
user-friendly implementation can be written. The end user need only write a function to perform
the operation of Eqn. (3.4), and this is a simple task for mostmesons.

The two-point correlation function between sourceA and sinkB is computed from

CAB(∆t) = ∑
i, j,t

O
(i, j)A
[r,s] (t)O( j,i)B

[s,r ] (t + ∆t). (3.5)

Since most operators can be constructed to have positive hermiticity we can achieve a large varia-
tional basis simply by combining different source and sink operator fields as long as we ensure that
the sample and hybrid list indices are summed correctly.

For isoscalar mesons, the disconnected diagram must also becomputed. This can be done very
straightforwardly using the hybrid list trick. The disconnected two-point function for sourceA and
sink B is

CAB(∆t) = ∑
i, j,t

O
(i,i)A
[r,r ] (t)O( j, j)B

[s,s] (t + ∆t). (3.6)
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4. Results

The method has been employed in a preliminary computation ofthe masses of isovector and
isoscalar mesons ofNf = 2 dynamical QCD on a tuned anisotropic lattice [7] with renormalised
anisotropy,ξ = 6 and a lattice spacing ofas ∼ 0.17fm (a−1

t ∼ 7GeV). An ensemble of between
225-250 83×80 and 123×80 lattices was used, with a quark mass around that of the strange. The
details of the simulation parameters can be found in [6].

The spectrum of light and heavy-light mesons was computed using the method, including the
S- and P-wave quark model states and an exotic hybrid, with quantum numbers 1−+.

4.1 Eigenmode dependence

It has been shown, in [2], that the explicit inclusion of low-lying eigenmodes can dramatically
improve the determined statistical error of correlation functions. To investigate the number of
eigenmodes necessary to achieve this improvement we look atthe behaviour of the fitted mass in
a constant fitting region while varying the number of eigenmodes (and also the dilution level) for
various symmetry channels. The fitting region is chosen according to the best fit achievable with
the highest dilution and number of eigenmodes. As an illustration of the observed behaviour we
show two channels, the 1−− and 2−+, in Fig. (1).
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Figure 1: The variation, in a constant fitting region, of the fitted masswith the number of low-lying eigen-
modes and two levels of dilution for the light-light 1−− and 2−+ channels.

We observe state-dependent behaviour in our determinations, with greater dilution and number
of eigenmode dependence in the (extended-operator) 2−+ channel. However, in both cases we
observe a saturation of improvement from the eigenmodes farbelow the maximum. It would seem
that as low as 20 eigenmodes with colour dilution might achieve optimal results. These calculations
were done on the 83×80 and there is a heuristic argument that the number of eigenmodes to achieve
these levels of improvement should scale with the volume.

4.2 Isovector correlators

Isovector correlators are calculated using the variational approach with 4 different smearing
operators for both light-light and heavy-light mesons on the two different volumes. The preliminary
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operators, correlated fitted masses andχ2 values can be found in Table 1. The fit ranges and values
are determined using sliding window fits as detailed in [6]. The percentage errors on the fitted
mass are displayed in Fig. 2 for both volumes. A fuller analysis with a larger variational basis is
currently underway.

Heavy-light Light-light
Volume 83×80 Volume 123×80 Volume 83×80 Volume 123×80

State Operator atmf itted χ2
PDOF

atmf itted χ2
PDOF

atmf itted χ2
PDOF

atmf itted χ2
PDOF

0−+ γ5 0.2396+7
−7 0.08 0.2393+4

−4 0.41 0.057+1
−2 0.24 0.0540+2

−2 0.01
1−− ~γ 0.2511+10

−10 0.28 0.2530+4
−4 0.46 0.105+3

−3 0.26 0.1058+7
−7 0.22

0++ 1 0.2774+20
−19 0.01 0.315+12

−13 0.33 0.161+3
−3 0.65 0.098+6

−5 0.18
1+− γ5~p 0.2988+28

−30 0.28 0.3246+12
−13 0.47 0.154+7

−7 0.61 0.176+6
−6 0.13

1++ ~γ ×~p 0.2773+46
−41 0.21 0.3104+21

−20 0.50 0.148+2
−2 0.28 0.138+5

−5 0.12
2++ γzpx + γxpz 0.3242+14

−14 0.39 0.3285+72
−75 0.31 0.217+4

−5 0.15 0.216+2
−2 0.46

2−− γ5(sx−sy) 0.3810+36
−38 0.22 0.3914+95

−98 0.31 0.214+14
−13 0.42 0.267+9

−9 0.21
2−+ γz(sx−sy) 0.3664+87

−87 0.42 0.391+11
−13 0.41 0.240+18

−18 0.16 0.273+4
−4 0.46

1−+ ~γ ×~u 0.324+32
−30 0.31 0.271+30

−34 0.23 0.218+25
−25 0.05 0.144+40

−46 0.29

Table 1: Table of fitted masses for the states in Fig. 2. Also shown is the operator used to obtain them and
theχ2 per degree of freedom. The extended operators~p,~sand~u are as defined in Ref. [1].

Figure 2: Percentage error of fitted masses of some symmetry channels using the all-to-all method for
heavy-light and light-light states on two different lattice volumes

We can see that the statistical accuracy to which the fitted masses are determined is extremely
high, 5% or lower for the vast majority of cases. Most notablehowever is the large error on the
determined mass of the hybrid 1−+, it is far above the other states and the excited gluonic path
appears to have a large effect on its determination.

4.3 Isoscalar correlators

In Fig. 3 we have the sliding window plots of the isoscalar 0−+ (left) and 0++ (right) mesons.
Plotted are the masses determined using the 100 lowest-lying eigenvectors in the hybrid method but
without a variational basis. These results are incomplete and preliminary and are currently being
investigated further. Dilutions more suited to the nature of the disconnected diagrams need to be
investigated.
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Figure 3: Masses of the isoscalar 0−+ (left) and 0++ mesons determined in a sliding window fit.

These measurements were taken on the 83×80 lattices and, as a general comment, theη ′ is
heavier than the pion and the 0++ isoscalar appears lighter than its isovector partner.

5. Conclusions

All-to-all propagator methods make it possible to use all available information contained in
background gauge configurations, which are an essential component of isoscalar channel stud-
ies. The hybrid method of Ref. [2] allows us to extract the important physics from the low-lying
eigenmodes and combine this with a noisy correction step in anatural way. The framework is
straightforwardly applicable to decays, glueball mixing,baryons and thermodynamic quantities
(condensates and susceptibilities). Preliminary investigations with this method suggest it provides
a toolkit to make accurate measurements of the properties ofthe isoscalar and isovector mesons of
QCD even with a low number of low-lying eigenmodes.

References

[1] P. Lacock, C. Michael, P. Boyle and P. Rowland [UKQCD Collaboration], Phys. Rev. D54 (1996) 6997
[arXiv:hep-lat/9605025].

[2] J. Foley, K. Jimmy Juge, A. Ó Cais, M. Peardon, S. M. Ryan and J. I. Skullerud, Comput. Phys.
Commun.172(2005) 145 [arXiv:hep-lat/0505023].

[3] H. Neff, N. Eicker, T. Lippert, J. W. Negele and K. Schilling, Phys. Rev. D64, 114509 (2001).

[4] W. Wilcox, arXiv:hep-lat/9911013.

[5] S. Bernardson, P. McCarty and C. Thron, Comput. Phys. Commun.78 (1993) 256.

[6] M. B. Oktay et al., “The spectrum of radial, orbital and gluoinc excitations of charmonium. ”, to appear
in the proceeding of Lattice 2006.

[7] R. Morrin, A. O. Cais, M. Peardon, S. M. Ryan and J. I. Skullerud, Phys. Rev. D74 (2006) 014505
[arXiv:hep-lat/0604021].

7


