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1. Introduction

In meson spectroscopy, many symmetry channels can be eagityred by the use of extended
operators that spatially separate the quark and antiquEnk. possible gluonic paths connecting
the pair give access to a new range of symmetry channels titherthose achieved using only
gamma matrix operations [1] and allows us to construct eela@yiational basis of operators.
Unfortunately, the introduction of the gauge fields into tpeerator give rise to large fluctuations
over an ensemble of gauge backgrounds. The use of all-fregdlagators is necessary to exploit
translational invariance, utilise all information comtad in the gauge fields and reduce the effect
of these fluctuations in correlation functions.

As well as offering a method for high-accuracy measuremehisovector mesons, the prac-
tical all-to-all propagator scheme of Ref. [2] provides anfiework to study isoscalar states in
detail. The isoscalar mesons of QCD remain poorly undedspb@nomenologically. In particular,
the JP© = 0™+ sector contains a range of experimentally observed resesahat are difficult to
interpret unambiguously in a quark model picture. Thesestaave proved difficult to investigate
in lattice simulations, since they require the calculatidrdisconnected correlation functions of
guark propagators, that are inaccessible to the usual pmpagator method of lattice QCD. The
disconnected correlation functions, like those of the mokéel operators, suffer from having large
fluctuations over an ensemble of gauge backgrounds.

Here, we present preliminary results from an investigatita the statistical accuracy achie-
veable using this method for a wide range of states in isovetiannels. We evaluate the low-lying
eigenmode dependence of correlation functions for somsesktchannels and also look at tHe 0
andn’ isoscalar channels.

2. The all-to-all propagator

In order to investigate correlation functions of all symmethannels of isovector and isoscalar
mesons, access to all entries of the quark propagator imbésto exploit the self-averaging effects
of translational invariance and allow the straight forwargplementation of extended operators.
Many algorithms to compute or estimate these have beenatk\fisr example see Refs. [3, 4]. In
this work, we utilise an exact implementation which emplaysybrid method that combines an
eigenvector decomposition with a variance-reduced sitichastimator [2].

To construct the all-to-all propagator, the lowbls} eigenmodes of the hermitian Dirac matrix
Q = kM are first computed, and a truncated spectral decompositiire @ropagator is then given

by

Nev
ST RV (SO
Qo ,Z)\iv Qv (2.1)

If Ney is equal to the dimension of the matrix, th€ = Q1, otherwise the propagator can be
expressed as

Q1=Qo+Q, (2.2)

and the truncation in the eigenvector representation casotrected by estimatin@l stochasti-
cally. To construct a stochastic estimate of the inverserétix, A, an ensemble of random noise
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vectors,{ Ny, -, Ning } With the property

(ne)@n)) =y, (2.3)

where((...)) denotes the ensemble average, is generated. The solutioms/eg (X) = A‘ln[R] (y),
can then be computed, typically using a conjugate gradigotithm, andA—? is estimated from

118 t
e Ne Z Yr® MR- (2.4)

If we let X(x,y) = n(x)n(y)T, the variance of the trace of the matrix inverse due to thehststic
estimation is essentially composed of two summations [5],

Var[Tr(A~1X)] = |ZA ~Tr(A %)

-3 (<<|x<y,x>| DIA- (x,y>|2+A-1<x,y)A-1<y,x>>*<<<x<x,y>>2>>)
XAy
+ 24K PZNIAH(x )2 (2.5)

The action of the matrix to be estimateg, can be implemented by noting that

Q=2Q", (2.6)
where #2; is a projection operator onto the vector space orthogonidietdl., eigenvectors, so

Nev
Pr=1—Py=1— zv ) v, (2.7)

and the action of”; is equivalent to Gram-Schmidt orthogonalisation with ezgppo the computed
eigenvectors.

For accessible numbers of eigenvectors, the stochasimatst in its simplest form is noisy.
We choose to “dilute” the noise vector, which results in dayariance reduction. In this context,
dilution means creating a set of noise vectors by applyingt @smasks to a single noise source.
These masks might for example select a particular time-siicthe vector (referred to as time
dilution), thus returnindNt noise vectors from each single noise source.

One can then decompose the ensemble of noise vectors imtoEheNy; dilution subspaces,

N = z[\"‘"ln , yielding an ensemble,

L L, (Nair) (Nai) H (Nai)
{{r][l]’r’[l] 77r’[1ﬂ|| } {’72] 7’7 7’7[2](:” }77{’7[NR]7r’[NR]77r’[N:]| }} (28)
Additional to Eqn. (2.3), the subspace dilution now implies
N9 ()" =X (xy) =X0(xy) 5 (29)

even before expectation values are taken. In Eqn. (2.5),anesee that dilution will, therefore,
reduce the first summatiofy,. ., to a sum where andy are in the same dilution subspauefore
expectation values are taken. This reduction in the sunemégitrue for any white noise and in the
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homeopathidimit of Ngj = N dilution subspaces this first sum is automatically zeroesinandy
can no longer be in the same dilution subspace. The secondsuoportional to the square of the
diagonal error only, foZ(N) noise this error is zero and we have zero variance in the hpatleic
limit.

In principle, the method of dilution can be optimised to reelthe variance. Time dilution
has been seen to be crucial and leads to an exponential edaction. While the variance falls
off more rapidly than 1./N for all further dilutions, little dependence on the detailshis further
dilution has been observed in simulations performed to.date

3. An efficient implementation

The method can be implemented efficiently in software by dise“bybrid list” method. Two
lists of Ny = Ney+ Ngji Vectorsu andw are written,

Wil :{‘i_j)’...7")<\:_Z‘\'/)7r’(1)7...7r’(Ndil)} (3.1)
ui) — {\,(1)7... AN D) 7w(Ndil)}7 (3.2)
Then the inverse dfl is written as a single sum over the pair of lists
Noo .
M-1= Zi(u(l) W)y (3.3)
i=

To compute a two-point correlation function for an isovecteson requires two further steps.
Pairs of hybrid lists from two independent noise sourceands, are combined to form aNy_ x
Ny matrix oroperator field

o) = wi (0wl auld ), (3.4)

wherel » is an operator on a time-slice that creates a meson with tsieedequantum numbers.
This stage of the construction is the only point where thigrafor is invoked, and so an efficient
user-friendly implementation can be written. The end us&dnonly write a function to perform
the operation of Eqgn. (3.4), and this is a simple task for mus$ons.

The two-point correlation function between soufcand sinkB is computed from

Cag(8t) = ¥ o)A 0 Pt + o). (3.5)
it ’

Since most operators can be constructed to have positivaitieity we can achieve a large varia-
tional basis simply by combining different source and sipkrator fields as long as we ensure that
the sample and hybrid list indices are summed correctly.

For isoscalar mesons, the disconnected diagram must atsorgmuted. This can be done very
straightforwardly using the hybrid list trick. The disc@mted two-point function for sourcgand
sinkB is

Cas(at) = 5 01 0L Pt + ). (3.6)
it
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4. Results

The method has been employed in a preliminary computatidgheoimasses of isovector and
isoscalar mesons ¢ = 2 dynamical QCD on a tuned anisotropic lattice [7] with renalised
anisotropy,é = 6 and a lattice spacing @k ~ 0.17fm (& ~ 7GeV). An ensemble of between
225-250 8 x 80 and 13 x 80 lattices was used, with a quark mass around that of thegetra he
details of the simulation parameters can be found in [6].

The spectrum of light and heavy-light mesons was computid) tise method, including the
S- and P-wave quark model states and an exotic hybrid, wihtgm numbers1+.

4.1 Eigenmode dependence

It has been shown, in [2], that the explicit inclusion of Iying eigenmodes can dramatically
improve the determined statistical error of correlationdiions. To investigate the number of
eigenmodes necessary to achieve this improvement we |atble dtehaviour of the fitted mass in
a constant fitting region while varying the number of eigede®(and also the dilution level) for
various symmetry channels. The fitting region is chosenraaog to the best fit achievable with
the highest dilution and number of eigenmodes. As an iitistn of the observed behaviour we

show two channels, the'X and 2, in Fig. (1).
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Figure 1: The variation, in a constant fitting region, of the fitted magth the number of low-lying eigen-
modes and two levels of dilution for the light-light 1 and 2+ channels.

We observe state-dependent behaviour in our determisatidgth greater dilution and number
of eigenmode dependence in the (extended-operatof)ckannel. However, in both cases we
observe a saturation of improvement from the eigenmodedsefaiv the maximum. It would seem
that as low as 20 eigenmodes with colour dilution might aehigptimal results. These calculations
were done on the®8«< 80 and there is a heuristic argument that the number of eigdagto achieve
these levels of improvement should scale with the volume.

4.2 |sovector correlators

Isovector correlators are calculated using the variatiaparoach with 4 different smearing
operators for both light-light and heavy-light mesons amttho different volumes. The preliminary
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operators, correlated fitted masses ghdalues can be found in Table 1. The fit ranges and values
are determined using sliding window fits as detailed in [6heTpercentage errors on the fitted
mass are displayed in Fig. 2 for both volumes. A fuller arialygth a larger variational basis is

currently underway.

Heavy-light Light-light
Volume & x 80 Volume 12 x 80 Volume & x 80 Volume 12 x 80
| State | Operator || aMrined | Xooor | @Miitted | XZor | &Mrited | Xooor | @Mrited | Xioor

0t |y 023967 [ 0.08 | 023937 [ 041 [ 0.057° | 024 [ 0.0540'3 | 0.01
1 |y 0.25111% | 028 | 025307 | 046 | 01053 | 026 | 010587 | 0.22
ot |1 0277420 | 0.01 | 031515 | 0.33 | 0.161"3 | 0.65 | 0.098% | 0.18
1 | wp 0.2988'25 | 0.28 | 0.3246'12 | 047 | 01547 | 061 | 0176 | 0.13
1+ | yxp 0277352 | 021 | 0.3104'% | 050 | 0.148"2 | 0.28 | 013872 | 0.12
2Y7 |y WP, || 03242717 | 039 | 03285772 | 031 | 0217¢ | 015 | 0.216'3 | 0.46
27~ | w(s—s) || 0381035 | 022 | 0.3914'% | 031 | 0.214'1% | 042 | 02677 | 021
277 | pisk—s) || 0366455 | 042 | 03917 | 041 | 024071 | 016 | 0.2731; | 046
1+ | yxu 0.324'35 | 031 | 027173) | 023 | 021852 | 0.05 | 0.144752 | 0.29

Table 1: Table of fitted masses for the states in Fig. 2. Also shownditerator used to obtain them and
the x2 per degree of freedom. The extended operglpgand are as defined in Ref. [1].
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Figure 2: Percentage error of fitted masses of some symmetry chansielg the all-to-all method for
heavy-light and light-light states on two different lagticolumes

We can see that the statistical accuracy to which the fittexbasaare determined is extremely
high, 5% or lower for the vast majority of cases. Most notdimevever is the large error on the
determined mass of the hybrid 1, it is far above the other states and the excited gluonic path
appears to have a large effect on its determination.

4.3 |soscalar correlators

In Fig. 3 we have the sliding window plots of the isoscalar @left) and 0 (right) mesons.
Plotted are the masses determined using the 100 lowestdygienvectors in the hybrid method but
without a variational basis. These results are incompletepreliminary and are currently being
investigated further. Dilutions more suited to the naturéhe disconnected diagrams need to be
investigated.
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Figure 3: Masses of the isoscalar 0 (left) and 0"+ mesons determined in a sliding window fit.

These measurements were taken on the 80 lattices and, as a general comment, fhés
heavier than the pion and the 0isoscalar appears lighter than its isovector partner.

5. Conclusions

All-to-all propagator methods make it possible to use adlilable information contained in
background gauge configurations, which are an essentiap@oemt of isoscalar channel stud-
ies. The hybrid method of Ref. [2] allows us to extract the émi@nt physics from the low-lying
eigenmodes and combine this with a noisy correction stepriataral way. The framework is
straightforwardly applicable to decays, glueball mixitgryons and thermodynamic quantities
(condensates and susceptibilities). Preliminary ingatitns with this method suggest it provides
a toolkit to make accurate measurements of the propertiggeagoscalar and isovector mesons of
QCD even with a low number of low-lying eigenmodes.
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