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we test to what accuracy staggered configurations describe continuum QCD. The agreement be-
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1. Introduction

Mixed action simulations became popular in recent years as they combine the simulation ad-
vantages of a simple sea quark action with the exact or near exact chiral symmetry of overlap or
domain wall valence quarks. The price to pay, in addition to an internal inconsistency (unitarity
violation), is the complication in the analysis. One option is to derive and use partially quenched
mixed action chiral perturbative formulae. Alternatively, one can match the parameters of the va-
lence and sea quark actions as well as possible and deal with any remainingdifference as part of
the lattice artifacts. This approach is useful if the chiral perturbative formulae do not exist or the
numerical data does not allow the fitting of all the parameters, or if one desires more insight into
the physics contained in a particular set of gauge configurations.

The effectiveness of the latter approach was illustrated in Refs. [1, 2],where we showed that,
at least within the 2–dimensional Schwinger model, mixed action simulations with overlap valence
quarks on rooted or unrooted staggered sea quark configurations reproduce the full dynamical
overlap results if the overlap mass is tuned appropriately. In this work we report our first results
along the same lines in 4–dimensional 2–flavor QCD. We show that configurations generated with
2–flavor staggered quarks at a single lattice spacing but at four different quark masses are consistent
with 2–flavor QCD configurations, at least for the three heavier masses.We also show how the
topological charge distributions can be used to determine the best overlap valence matching masses
and that with these mass values the data sets predict a consistent value for the chiral condensate of
2–flavor QCD. All details can be found in Ref. [3].

2. Strategy and Simulation setup

Our sea quark action is the 2–flavor Asqtad staggered action [4 – 6]. We have generated four
configurations sets, each consisting of 400-500 124 lattices at a lattice spacing of abouta= 0.13fm.
The details of the sets are summarized in Table 1. The level of taste breaking,the ratios of the
heaviest and lightest pion masses, is approximated from corresponding 2+1 flavor results [5]. The
last column lists the separation of the configurations in terms of unit length molecular dynamics
trajectories.

Our valence action is an overlap action based on an improved Wilson kernelon HYP smeared
links. This action was used in recent overlap simulations [7, 8].

To investigate if the rooted staggered gauge ensembles are consistent with two–flavor con-
tinuum QCD one has to consider observables that are sensitive to the vacuum and do not depend
strongly on the valence quark mass. Spectral quantities are not appropriate, but the low lying in-
frared eigenmodes of the massless valence Dirac operator offer a goodchoice. Another quantity
which we will consider is the topological charge of the configurations. On each configurations we
ask what valence quark mass matches the staggered configurations the best, i.e. what valence mass
minimizes the lattice artifacts, the difference between lattice data and continuum QCD.

3. Eigenvalues of the Dirac Operator and Random Matrix Theory

Random matrix theory (RMT) captures the universal chiral properties of QCD and predicts the
distribution of the physical (infrared) eigenvalues of the massless Dirac operator in theε–regime.
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Set β amst r0/a [9, 10] Taste breaking Time separation

L 7.18 0.01 3.84(6) 60% 5
M 7.20 0.02 3.82(3) 34% 5
H 7.22 0.03 3.60(4) 24% 10
E 7.24 0.04 3.64(3) 18% 15

Table 1: Parameters of thenf = 2 staggered background configurations. The molecular dynamics time
separations between the configurations reflect the autocorrelation of the topological charge.

The predictions are given in fixed topological sectorν and depend on the low energy constantΣ, the
infinite volume chiral condensate. The distribution of the (microscopically rescaled)nth eigenmode
λΣV is given as

Pν,n(λΣV) = Λν,n(mΣV;nf ) , (3.1)

wherem is the quark mass of the configurations (sea quark mass), which in our case is an overlap
quark mass that corresponds to the background configurations that were generated by staggered
quarks, i.e.m is the matching quark mass as described in Sect. 2. The value ofm is not known a
priori and thereforeΛν,n depends on two variables,M = mΣV andΣ. We fit the measured eigenvalue
distribution to random matrix theory at fixedM and predict the chiral condensateΣ. The systematic
deviation of the data from the RMT prediction of Eq.(3.1) characterizes the lattice artifacts, both
from discretization errors and from the non-locality of the action. This deviation is the measure of
consistency between the lattice action and continuum QCD and replaces the residue used in Ref.[1]
for the same purpose. If the rooting procedure is correct, it should scale to zero as the continuum
limit is approached at fixed physical (matching) quark mass, assuming the simulations are done in
the region where the RMT predictions are valid.

To fit the cumulative distributions, we use the Kolmogorov-Smirnov (KS) test that minimizes
D2

max, the maximal deviation between the measured and the predicted cumulative distributions [11 –
13]. An advantage of the KS test is that there is an explicit and simple form for the confidence level
of the fit. For a given sample length this quality factorQKS is a monotonically decreasing function
of Dmax that gives the probability that the measured distribution is consistent with the analytical
one. The KS fit maximizes the quality factorQKS or the product of quality factors if more than one
distribution is used.

However,QKS will go to zero exponentially with increasing statistics if the measured distri-
bution is notexactlydescribed by the analytic form. In any lattice calculations there are lattice
artifacts and finite volume effects, so the analytic form is never exactly reproduced, the quality
factor vanishes as the numerical statistics increases. In the following we fitour data by maximizing
the quality factor (or products of quality factors) according to the KS test, but describe the goodness
of the fit by the valueDmax itself to enable a comparison with other results.

Fig. 1 shows a typical fit of the cumulative distribution for theM (amst = 0.02) data set at
M=13.5. The left panel corresponds to theν = 0, the right panel to theν = 1 sector. Only the first
modes of theν = 0 and 1 topological sectors are included in the fit. In addition to the two fitted
modes we also show the non-fitted second modes in the same topological sectors. Dmax is almost
a factor of two smaller for then = 1, ν = 1 mode, but not significantly worse for the non-fitted
modes than for the fittedn = 1, ν = 0 mode.
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Figure 1: RMT predictions of the cumulative distribution of the two lowest eigenmodes in theν = 0 and
1 sectors of theM set atM =13.5 (see below). The fit uses only the first mode in each topological sector.
Arrows indicate the maximal deviation between the data set and the analytical predictions.

In Fig.2 we plot the maximal deviationsDmax as a function of the RMT parameterM. Ev-
idently the quality of the fit is not very sensitive to the parameterM. While small values are
disfavored, larger values are almost equally probable. Contrary to ouroriginal hopes the eigen-
mode distributions cannot be used to define a matching mass, it defines only a range of acceptable
values.

Result of the fit are similar for the other
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Figure 2: Dmax as the function ofM for the M data
set. The fit uses the first modes of theν = 0 and 1
sectors (filled points).

three data sets. The upper panels of Figure 3
showDmax for the fitted modes, and the depen-
dence on the staggered mass is obvious.Dmax

is significantly lower at the heaviestE data set
than for the lightestL one, with the interme-
diate mass sets lying in between. This behav-
ior is expected since at finite lattice spacing a
smaller staggered mass leads to increased taste
symmetry breaking (Table 1), it differs more
from the flavor symmetric valence quark sec-
tor. With decreasing lattice spacing at fixed
physical quark mass this deviation should de-
crease and eventually vanish in the continuum
limit.

At eachM value the fit predictsΣV/a and usingr0/a from Table 1 this can be converted to
physical units as shown on the lower panels of Fig.3. The correspondingoverlap mass valuesm
are shown along the upper border of the figure. In order to predict thechiral condensate we have
to find an independent quantity that predicts the matching valence quark mass. The topological
charge distribution is a possible choice as we will discuss in Sect. 4.

In Table 2 we list the number of configurations, theDmax values of the RMT fit at specific
M = mΣV values and the corresponding quality factors. TheDmax values can be compared to those
from Ref. [13]. That work uses dynamical overlap configurations atsimilar physical volumes at
slightly coarser lattice spacing. Using the same fitting strategy as ours they findDmax= 0.11∼0.20.
In view of these numbers we can conclude that, as far as the Dirac operator eigenmode distribution
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Figure 3: Dmax andΣ1/3 in GeV as the function ofM = mΣV for all four data sets.

is concerned, the rooted staggered action configurations do not show larger lattice artifacts than the
overlap ones.

4. Topology

Since we have sufficient statistics, over 400 approximately independent configurations at each
coupling value on not too large volumes (124 or about 6 fm4), we can study the topological charge
distribution. Following the discussion of Refs. [14 – 16], we write the probability of encountering
a charge±ν configuration in the dynamical ensemble asPν = Zν(mΣV)Qν(σ). HereQν is the
quenchedprobability of a charge±ν configuration, expected to be Gaussian up to 1/V corrections,
while Zν describes the suppression due to the fermionic determinant. The fermionic suppression
factor has been calculated both within chiral perturbation theory and the random matrix model

Set M = mΣV Σ1/3 / MeV am ν N Dmax QKS

L 12.7(2.0) 295.7(7.0) 0.083(4)(14) 0 89 0.157 0.022
1 144 0.130 0.014

M 13.5(2.8) 291.7(4.1) 0.090(3)(19) 0 103 0.121 0.092
1 172 0.080 0.217

H 16.9(1.9) 288.0(5.4) 0.098(4)(12) 0 87 0.123 0.132
1 178 0.081 0.181

E 22.6(4.3) 293.5(4.1) 0.127(4)(24) 0 85 0.071 0.768
1 193 0.058 0.022

Table 2: Results of the RMT fit to the lowest eigenmodes in theν = 0,1 sectors. For the determination of
M see Sect. 4. The first error on the matching overlap massam is due to the uncertainty ofΣ only, while the
second one takes into account both the errors ofΣ andM.
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[14, 15]. Thus the charge probability distributionPν depends on two variables,M = mΣV andσ .
The latter can be determined from the quenched topological susceptibility, soa one parameter fit to
the topological charge distribution data predictsM, which we list in Table 2.

5. The chiral condensate and matching masses

With theM = mΣV values predicted from the topological charge distribution we are now able
to extract the physical value of the chiral condensate. Combining theM values withr0/a from
Table 1 we find that all four configuration sets predict a consistent valuefor theΣ condensate, as
listed in Table 2. The only sign that the lightL set differs from the RMT prediction more than the
other mass values is the larger error of the predicted condensate. The value we obtain,

Σ1/3
lat = 291(5) MeV , (5.1)

is the lattice condensate. It is consistent with predictions obtained on overlapdynamical configu-
rations [13], further supporting our observation that the rooted staggered configurations are QCD
like, the non-local terms of the action can be simply taken into account as lattice artifacts.

To connect the value of the condensate to a more conventional scheme, likeMS at 2GeV,
one needs the corresponding renormalization factorZs. Such a factor should be calculated non-
perturbatively on the staggered configurations with our specific valenceDirac operator. We have
not done this calculation yet but similar ones exist [12, 13, 17].Zs seems to be largely independent
of the detailed properties of the background configurations and we estimateits value to beZs≥ 0.9,
which will lower Σ1/3

lat by 3%. In addition, there is a finite volume correction to the condensate that
could lower its value further [13]. These effects will have to be investigated but they are beyond
the scope of the present work.

CombiningM andΣ we get the values listed in the ”am” column of Table 2. These matching
masses are not only surprisingly large but they do not depend linearly onthe staggered masses.
While the staggered quark mass changes a factor of four between the lightest and heaviest data
sets, the matching overlap masses change only 50% . This is similar to what we observed in the
Schwinger model [1]. The matching valence masses show an overall shiftcompared to the stag-
gered sea mass values. In addition at very small sea quark masses, where the matching breaks
down, the valence quark masses are largely independent of the sea quark mass values. This is il-
lustrated in Fig. 3 of Ref. [1]. Such behavior implies that staggered configurations at small quark
masses are not necessarily closer to chiral continuum QCD than the heavier mass configurations.
All the computational efforts creating light configurations might be in vain, creating only configu-
rations with larger lattice artifacts. This might not be a problem when the data is analyzed with the
whole machinery of staggered partially quenched chiral perturbation theory but should be consid-
ered when individual configuration sets are analyzed in mixed action simulations. Of course this is
only a lattice artifact and any such effect will disappear as the continuum limitis approached.

6. Conclusion

We have studied the properties of the rooted staggered action in a mixed actionsimulation
using overlap valence quarks. By comparing physical quantities that areindependent of the va-
lence quark mass to continuum QCD predictions we identified lattice artifacts andstudied their
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dependence on the sea quark masses. In this work we considered the eigenvalue distribution of the
massless Dirac operator and the distribution of the topological charge. We compared the former
to the universal predictions of random matrix theory and found that the systematic deviation of the
data from the predictions were comparable to dynamical overlap simulations. Using the topologi-
cal charge distribution we could identify the matching overlap valence quarkmass value which best
describes the staggered configurations. We found these matching valuesto be fairly large and their
dependence on the staggered sea mass values indicate a finite offset, in addition to a linear mass
renormalization factor between the valence and sea mass values. With the useof this matching
mass we extracted the value of the chiral scalar condensate. We found that the predictions from
all of our staggered configuration sets were consistent. These findingsindicate that at our lattice
spacing,a≈0.13fm, and with not very light sea quarks the rooted staggered lattice configurations
have lattice artifacts similar to other lattice actions, the non-local terms arising from the rooting
procedure can be simply considered as part of the cutoff effects. In order to show that these non-
local terms indeed become irrelevant in the continuum limit the calculation have to be repeated at
different lattice spacings and the scaling of the lattice artifacts should be investigated. It would also
be important to study in a similar manner the lattice artifacts of other observables.
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