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We discuss mass splitting for degenerate tastes of staggered fermions based on anSO(2D) Clifford

algebra formulation. Rotationally invariant terms are added to the original staggered action with

the formulation. We have four candidates for improved mass terms that can split the degenerate

mass of staggered fermions. Among them, three type combinations are considered. We analyze

the mass matrix and the propagator in two-dimensional free theories and find only one case that

can identify with a light single Dirac mode.
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1. Introduction

Staggered fermions are formulated in which species doublers of a Dirac field are interpreted as
physical degrees of freedom,tastes, on lattice [1, 2]. However, it remains for a 4-fold degeneracy
problem of tastes in four dimensions to be unsolved. To unfold the degeneracy, there is an approach
called afourth-root trickfor the determinant in a staggered Dirac operator. Although studies on its
theoretical basis are developed [3, 4, 5, 6], we have no local expression of one taste Dirac fermion
after the fourth-root trick.

Avoiding the trick, there are pioneering works for solving the degeneracy tried by improved
staggered fermion approaches [7, 8]. The improved actions generally include more operators than
the original staggered one and are difficult to treat them [9]. For the control of their operators,
we make use of staggered fermions on aD-dimensional lattice space based on anSO(2D) Clifford
algebra, and a discrete rotational symmetry can be represented by the algebra [10].

In this article, to split degenerate tastes, we add new four operators to the original staggered
action in two dimensions. Only these four operators keep the discrete rotational symmetry in any
dimension [10]. The total mass matrix analysis is insufficient because the matrix does not commute
with the kinetic term. Therefore, we also analyze the propagator and the pole of the improved
free staggered Dirac operator. It is found that only one combination in these operators is a good
candidate after these analyses. More details can be found in Ref. [11].

2. Formulation of staggered fermions and rotational symmetry

Staggered fermions on theD-dimensional lattice space has been formulated by theSO(2D)
Clifford algebra [10]. The basic idea is that the dimension of the total representation space includ-
ing spinor and taste spaces,2D is the same as that of anSO(2D) spinor representation.2D is also
the same as the number of sites in aD-dimensional hypercube. To avoid the double counting of
sites, the lattice coordinatenµ is noted by

nµ = 2Nµ +cµ + rµ , (2.1)

whereNµ is the global coordinate of the hypercube. In this case, a fundamental unit is2a, wherea
is a lattice constant, and is set to unity.cµ = 1/2 for anyµ means the coordinate of a center in the
D-dimensional hypercube andrµ does the relative coordinate of a site to the center. The relative
coordinate is the same as a weight of the spinor representation inSO(2D).

Although our formulation can be generalized, we consider a free theory in a two-dimensional
lattice, for simplicity. Relative coordinates of four sites around a plaquette are written by

(r1, r2) = (−1/2,−1/2), (−1/2,1/2), (1/2,−1/2), (1/2,1/2). (2.2)

Actually, our staggered fermion is defined on sites (2.2) as

Ψ(n)≡Ψr(N) =




Ψ(−1/2,−1/2)

Ψ(−1/2,1/2)

Ψ(1/2,−1/2)

Ψ(1/2,1/2)


(N)≡




Ψ1

Ψ2

Ψ3

Ψ4


(N). (2.3)
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It is noted thatΨ1 andΨ4 are put on even sites andΨ2 andΨ3 are put on odd sites.

An SO(4) Clifford algebra plays a crucial role in two-dimensional cubic lattice formula-
tions [10]. The original staggered fermion action [1, 2] can be written as

Sst = ∑
N,N′,r,r ′,µ,~τ

Ψ̄r(N)(D~τ
µ)(N,N′)(Γµ,~τ)(r,r ′)Ψr ′(N′), (2.4)

where~τ is a two-dimensional vector with its components of±1/2 andD~τ
µ for µ = 1,2, is a gener-

alized difference operator defined by

(D~τ
µ)(N,N′) ≡

1
22 ∑

~σ=0,1

(−1)(~c+~τ)·~σ (∇~σ
µ )(N,N′), (2.5)

with

(∇~σ
µ )(N,N′) =





δN,N′−δN−µ̂,N′ ≡ ∇−
µ , σµ = 0,

δN+µ̂,N′−δN,N′ ≡ ∇+
µ , σµ = 1.

(2.6)

~σ is a two-dimensional vector dual to~τ and ∇+
µ (∇−

µ ) implies a forward (backward) difference
operator along theµ-direction, respectively. The matrixΓµ,~τ in our action (2.4) is composed of the
SO(4) Clifford algebraΓµ,−~c ≡ γµ andΓµ,−~c+~eµ ≡ iγ̃µ ,

(Γµ,~τ)(r,r ′) ≡





((σ1/2+τ1
3 ⊗σ1/2+τ2

3 )× (σ1⊗111))(r,r ′) , µ = 1,

((σ1/2+τ1
3 ⊗σ1/2+τ2

3 )× (σ3⊗σ1))(r,r ′) , µ = 2,

(2.7)

where~eµ is the unit vector along theµ-direction. Here we denote the fundamental algebra, or the
SO(4) Clifford algebra as

{γµ ,γν}= {γ̃µ , γ̃ν}= 2δµν , {γµ , γ̃ν}= 0. (2.8)

For a discrete rotation with angleπ/2 around the center, the transformations of global and relative
coordinates are denoted byN→ R(N), r → R(r), and that of fermion is

Ψ(N)→V12Ψ(R(N)). (2.9)

V12 is a rotation matrix about a spinor index in theSO(4) base, up to a phase factor given by a form

V12 =
eiϑ

2
Γ5(γ̃1− γ̃2)(1+ γ1γ2), (2.10)

whereΓ5 ≡ γ1γ2γ̃1γ̃2 = diag(1,−1,−1,1). Only the following four operators̄ΨOiΨ for i = 1 - 4,

O1 = 111, O2 = iγ1γ2 ≡ Γ3, O3 = γ̃1 + γ̃2, O4 = Γ3(γ̃1 + γ̃2), (2.11)

are invariant under the rotationV12OiV
†
12. Our analyses in the following sections concentrate on the

improved staggered fermion action by these four matrices.
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3. Analysis of mass matrices

To split masses in desired degenerate tastes we introduce four rotationally invariant operators
which we denote as̄ΨOiΨ [10], for the original staggered fermion action (2.4). The total mass
matrix form which is invariant under the rotation byπ/2 in two dimensions is given as

MR = m1111+m2Γ3 +m3(γ̃1 + γ̃2)+m4Γ3(γ̃1 + γ̃2), (3.1)

wherem1, m2, m3 andm4 are parameters of each operator in Eq. (2.11). MR has four eigenvalues

m1−m2−
√

2m3 +
√

2m4, m1−m2 +
√

2m3−
√

2m4,

m1 +m2−
√

2m3−
√

2m4, m1 +m2 +
√

2m3 +
√

2m4. (3.2)

A 4-component spinor should be separated into two 2-component spinors since a two-dimensional
Dirac spinor is composed of a 2-component mode and we keep the rotational invariance even under
a finite lattice constant1. Actually all possibilities of this separation are three cases and are listed in
Table1.

parameter conditions rotationally invariant mass termmass eigenvalues

case 1 m2 = m3 = 0 MR1 = m1111+m4Γ3(γ̃1 + γ̃2) m1±
√

2m4

case 2 m2 = m4 = 0 MR2 = m1111+m3(γ̃1 + γ̃2) m1±
√

2m3

case 3 m3 = m4 = 0 MR3 = m1111+m2Γ3 m1±m2

Table 1: Three cases for the degenerate mass splitting into two spinors.

After the mass splitting, we can find the character of a Dirac spinor under the rotation,

ψ(x)→Qψ(R(x)), (3.3)

whereQ = e(iπ/4)σ3 =
(

eiπ/4 0
0 e−iπ/4

)
. Actually in cases 1 and 2 we can keep the property of a

Dirac spinor on lattice. By contrast,Ψ(N) acts as a vector not as a spinor in case 3. The properties
of 2-component spinors under the rotation are summarized in Table2 2.

4. Pole analysis and 2-point functions

Our adding terms do not commute with the staggered Dirac operator. As a result, our analysis
in the previous section is insufficient to split masses. We must proceed in the pole analysis of the
theory because a pole mass is physical. The staggered Dirac operator in the momentum space is
written as

Dst(p) = ∑
µ

{
iγµ sinpµ + iγ̃µ(1−cospµ)

}
. (4.1)

1If one permits the rotational invariance only after taking the continuum limit, it is not necessary for degeneracy of
a heavy mode and there are six more cases derived from Eq. (3.2).

2MR andV12 can be diagonalized simultaneously because[MR,V12] = 0.
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Vdiag
12 phase factor ofV12

case 1

(
Q 0
0 eiπQ†

)
eiϑ = eiπ/2 = i

case 2

(
Q 0
0 eiπQ†

)
eiϑ = eiπ =−1

case 3

(
Q2 0
0 eiπ/2(Q†)2

)
eiϑ = e−iπ/4 = (1− i)/

√
2

Table 2: The properties of Dirac spinors under the rotation.

Our steps to find a pole mass are as follows: (i) setp1 = 0 and p2 = iκ (pure imaginary)
of the inverse propagatorD−1 in the momentum representation where our rotationally invariant
operators are included; (ii) calculate four eigenvaluesλ of D−1; (iii) find values ofκ in setting
λ = 0. Four values ofκ equal to pole masses. As mentioned in sections 2 and 3, we keep the
rotational invariance in our action and generate two Dirac spinors with different masses. We define
m1, m′

2 ≡−im2, m′
3 ≡−im3 andm4 as real parameters to obtain real pole masses and then denote

by ml andmh the light and heavy Dirac masses, respectively. For each three cases results in brief
of the pole analysis are as follows.

• case 1
The pole mass is still splitting under|m4| < 1. It is also found that we can take a limit|mh| → ∞
for arbitraryml by performingε → 0 in an expressionm2

4 = 1− ε (0 < ε ¿ 1).

• case 2
The pole mass remains degenerate because the improved termm′

3(γ̃1 + γ̃2) is absorbed into the
kinetic term.

• case 3
This case allows pole masses to split although the rotational property of the eigenmode is not a
spinor from the discussion of the previous section.

Note that it is possible to take the light massml to zero by tuningm1 andm4 only in case 1. In
the case we obtain the equation for the pole mass as

16(1−m2
4)sinh4 κ

2
−8(m2

1 +2m2
4)sinh2 κ

2
+(m2

1−2m2
4)

2 = 0. (4.2)

Then, solutions of Eq. (4.2) under the massless conditionm2
1 = 2m2

4 are determined as

sinh2 ml

2
= 0 , sinh2 mh

2
=

2m2
4

1−m2
4

. (4.3)

In addition, to decouple the heavy mode, we can throw the mass up to infinity. Actually from
Eq. (4.3), we can realize massless and infinity modes as Table3 simultaneously. Although the
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formalΓ5 chiral projection which means even-site and odd-site separation of fermion modes is not
consistent with the rotational invariance of a staggered Dirac action, it is found that infinity modes
can be separately put on even or odd sites3.

massless modes infinity modes

m4 > 0




1+
√

2
−1−√2

1
1


 ,




1−√2
1−√2
−1
1







1
0
0
0


 ,




0
0
0
1




m4 < 0




1−√2
−1+

√
2

1
1


 ,




1+
√

2
1+

√
2

−1
1







0
0
1
0


 ,




0
1
0
0




Table 3: Eigenvectors of the improved Dirac operator in case 1 withm2
1 = 2m2

4.

5. Summary and discussion

We have studied the mass splitting of two-dimensional staggered fermions based on theSO(4)
Clifford algebra. Introducing four rotationally invariant operators, we have analyzed three types
of improved staggered Dirac operators and found one possibility (case 1) for taking a single mode
in a two-dimensional free theory. The case keeps the splitting not only in the analysis of the mass
matrix itself but also in the pole analysis including the kinetic term. According to the improvement
with respect to the rotational invariance, the derived2-component modes can be regarded as the
ordinary spinor under the rotation byπ/2. Furthermore, one can find a massless mode in the
case unexpectedly. Our future tasks are analyses of interacting theories and the extension of our
approach to four dimensions. In particular, it is crucial whether the massless condition is stable
under quantum corrections by gauge interactions.
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