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1. Introduction

While staggered fermions offer many computational advantages, their al@sinot have
full chiral symmetry and the chiral limit has to be taken together with the contidumiin This is
no different from other non-chiral actions, but staggered fermiane lanother, potentially serious
problem. In 4 dimensions the staggered action describes four speciest@s) of fermions and
in order to reduce the number of tastes a fractional power of the fermienndi@ant is taken in
the path integral. There is no a priori reason that this rooted determinaesponds to a local
fermionic action belonging to the same universality class as 1-flavor QCD.

Although several analytical and numerical works addressed this gnéstibe last few years
[1-10], none of them showed evidence that the procedure introdwesuniversal errors, i.e.
errors that cannot be considered cutoff effects. Recently it has dggied, based on a number
of reasonable conjectures, that while the rooted staggered action Iscairat any finite lattice
spacing, in the continuum limit the non-local terms become irrelevant [11, 12]

In this paper we present numerical evidence obtained in the massivérgeinwnodel, show-
ing that the rooted staggered action is in the right universality class. Weslatso that the stag-
gered action can be considered equivalent to a chiral Ginsparg-Witt@m only when the stag-
gered mass is larger than typical taste symmetry breaking effects, limiting thengi@r space
where staggered simulations can be expected to approximate continuum@describe how
the masses of the staggered and corresponding overlap actions shoodddhed to obtain physi-
cally equivalent theories when this condition is satisfied. More details on thehing procedure
and additional results can be found in [13].

2. The continuum limit of the staggered action

The patrtition function of the unrooted staggered action is
Z= /D[U Pyle SV -FMramy _ /D[U] de(M +amy) e S| (2.1)

where§;(U) is a gauge actiony is the staggered Dirac operator amal; is the bare staggered
mass. In thea — O continuum limit the staggered action descrilbes- 4 degenerate fermions

in 4, np = 2 fermions in 2 dimensions. At finite lattice spacing the taste symmetry is broken, the
action describes; fermion tastes but only with a remndut1) taste symmetry. Depending on the
staggered quark mass, at finite lattice spacing one has one of the folldwiatss.

e At amy = 0 the staggered action’s spectrum has a single Goldstone partict€ ardmas-
sive pseudoscalars. Whihg — 2 of these will become masslessaas: 0, at any finite lattice
spacing the staggered spectrum is very different frgaflavor massless QCD. At small
fermion massamg; > O the taste breaking terms dominate and the non—-Goldstone pions are
heavy compared to the Goldstone one. One does not expect QCD-likeidneh

e amy; > 1 is the cutoff region, again not continuum QCD-like.

e Only in the middle of these extremes would one expect to observe QCx Fh@ amy;— 0
continuum limit should be approached here.
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While staggered fermions formally alloamy; = O, physically this limit does not correspond to
QCD at any finite lattice spacing [7, 8]. Simulations cannot be trusted at a &mallon mass
where taste breaking terms dominate the pseudoscalar sector. Howevastthbreaking terms
are expected to scale at least w@ia?), such that at small enough lattice spacing the continuum
limit can be approached with any finite fermion mass. Thus the exclusiamgf= 0 is not a
serious problem for massive fermions.

The staggered determinant can always be written as

detM +amy;) = def*(Dys +amys) det(T), (2.2)
whereD1; + amy; is an arbitrary 1-flavor Dirac operator and @et describes all the terms that are

not included in the latter. If the loc@l,; operator and the mass termi; could be chosen such that
T contains only local gauge terms,

det(T) = e Sr(V) | (2.3)
the staggered action would differ from ap-flavor degenerate Dirac operator only in cutoff level
terms [2]. This is indeed the case for heaayy: > 1 fermions.

On the other hand there are several examples [10, 11, 14] that illusteatatthm,; = O the
operatorT cannot be local at any finite lattice spacing. This, however, does nat thea the
staggered operator cannot describe QCD in the continuum limit. If we writgetegminant as

det(T) = e %V def1+4), (2.4)
and can choos&y such that the non—local terthis bounded at finite mass and goes to zero as
a — 0, the staggered determinant in Eq.(2.2) will descripdegenerate flavors in the continuum
limit. This is certainly the expected behavior for the unrooted action.

Now we turn our attention to the rooting procedure. With the notation introdabede, the
root of the staggered determinant is

det/™(M +amy,) = detDys+ amyy) e V)M det/™ (14-A). (2.5)

If one could show that
A—0 asa—0, (2.6)

the rooted determinant of Eq.(2.5) would correspond to a local 1-flastmmain the continuum
limit. Based on renormalization group arguments, in Ref. [4] Shamir showedhtisas indeed
the case for free fermions. In a recent work [12], based on a nuailbeasonable assumptions, he
argues that the same is true in the interacting theory. Here we presenticalmesults to support
this claim.

In the following we pick an arbitrary Ginsparg-Wilson operatorag and ask ifamy; and
S#(U) can be chosen such that Eq.(2.6) is satisfied.

3. Matching the fermionic deter minants

The actual matching strategy is fairly general and we will describe it farhitrary pair of
Dirac operator®; +am andD, 4+ amp. We want to know to what extent the determinant of the
first Dirac operator can be described by the determinant of the sedongyre gauge terms. To

find this we calculate the determinant ratio
detD; +any)
def(T) = ——————~ 3.1
() det(D, +anp) (3.1)
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on configurations generated with the actfn= S;(U) + /(D1 +amy) . Next we fit the logarithm
of the determinant ratios with a local pure gauge acfigm In practice we use an ultralocal
effective action consisting of small Wilson loops. The accuracy of the nmagjcit fixed fermion
masany, is characterized by the per flavor/taste residue
detD; +am) 2\ 1/2

r(mp) = <<|09m —Seff(U)) > . (3.2)
The minimum of the residugm) in terms ofmy, determines the actidd, + amy that isphysically
closesto the originalD; + amy action. In this sense it defines the masghat matches the fermion
massm. In the notation of Eq.(2.4) then

2\ 1/2

(M) = < ((log de(1+A)) > . (3.3)
If the two fermion operators describe the same continuum theory the régdue vanish ag — 0
at fixed volume and quark mass.

4. Schwinger model - numerical results
4.1 Setup and matching tests

The 2—dimensional Schwinger model offers an excellent testing grauriid matching idea
as it can be studied with high accuracy and limited computer resources slijiEa-renormalizable
theory since the bare gauge coupligs dimensional, the lattice gauge couplingBis= 1/(ag)?.

A continuum limit in fixed physical volume can be achieved by keeping the sradiriablez= Lg
fixed while increasing the lattice resolution. We choase 6 and vary the lattice size between
L/a=12 andL/a= 28. The scaling parametecharacterizes the (physical) volume while we use
mL to fix the mass.

We produced gauge configurations using a global heatbath for thegtlagauge action and
in the data analysis the measurements are reweighted with the appropriateopdkaes fermion
determinant to obtain the observables in the full dynamical theory. On tlgegaanfigurations
we measure a set of Wilson loofg$ as well as the complete spectra of the Dirac operators under
consideration. For the matching we use 9 loops up to length xinWith a maximal extension
of four lattice unitsS.¢ is very localized even on our coarsest lattices and in particular weoto
increase the size or number of loops as we approach the continuum. dtidiérig we concentrate
on the matching of the staggered action to a smeared overlap action. Foretaite see [13].

4.2 The unrooted staggered action

We start our investigation with the unrooted action, which in 2 dimensionssgonels to two
fermion tastes. In the continuum limit it is expected to describe two degeneratesiland thus it
should differ from a degenerate 2—flavor overlap action in irrelevamdenly. Fig.1 shows the
matching of they, = 2 staggered determinant with tNe = 2 flavor-degenerate overlap determinant
atz=6 onL/a= 20 lattices § ~ 11.11). The quenched configurations were reweighted to the
dynamical staggered ensembleaat;; = 0.025. The residue of the matching (Eqg.3.2) has a well
defined minimum aém,, = 0.03173).

By repeating the matching at different values of the staggered masggwe can find the
matching overlap masses at the given lattice spacing as shown by the blua #ags2. For
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Figure 1: The residue of Eq.(3.2) as the functionFigure 2: The matching mass as the function of
of the matching mass drya= 20 configurations the dynamical action mass at fixed lattice spac-
generated amy; = 0.025. ing for 2 tastes/flavors.

larger masses the data show a linear dependence with a constant affsemdi masses, below
ams: ~ 0.02, there is a clear deviation from the linear behavior. The residue ofttirefeases
from 0.02 at the heaviest mass to 0.09 at the lightest one, indicating that th@mgagcno longer
meaningful. According to the discussion in Sect.2 we interpret this as theeséahgction being
QCD-like foramy=0.02 and not QCD-like below. As a consistency check we repeated the same
matching on a dynamical overlap background. The result, shown bydharotes in Fig.2, is the
mirror image of the staggered with overlap matching data up to the point whdedtdrematching
breaks down. This is the expected behavior if the two actions differ onlgtbge artifacts.

By restricting the configurations to the sector of trivial topology we coutifywéhat the dif-
ference between the matching on the two ensembles and also most of the esidee ascribed
to configurations with non—vanishing topological charge.

Next we consider the continuum limit of the matching at fixed physical rhassl volume
z= 6. Fig.3a shows the residue of matching the 2-taste staggered determinatiten@lavor
overlap determinant at different masses as a functicafgf. For the smallest massy,L = 0.4
the data stops arourafg? = 0.11 - on coarser lattices the two actions cannot be matched, the
residue of Eq.(3.2) has no minimum. Nevertheless matching is possible at snititerdpacing
and the residue at fixet,, L approaches zero at least quadraticallg.imhe continuum limit can
be approached with any fermion mass and the staggered determinantdzscthibed as a 2—flavor
chiral determinant plus pure gauge terms. This is the behavior we exgemtedniversality.

4.3 Therooted staggered action

Now we repeat the analysis of the previous section for the rooted seabgetion. The con-
figurations are reweighted with the square root of the staggered detetnaina the rooted de-
terminant is matched with the 1-flavor overlap determinant plus pure gaugs,taccording to
Eq.(3.2).

The quality of the matching is very similar to the unrooted/2—flavor case as treafeles
in Fig.1 show. In fact, even the matched maBs, = 0.03222) hardly differs from the 2—flavor
case. The 1-flavor data in Fig.2 is indistinguishable from the shown 2+fiata.

1we fix the physical mass by keepingyL constant and vary the staggered sea quark mass to achieve the matching
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Figure 3: Residue of the matching as a function of the (squared) ¢éa¢fdacing at different physical masses.
a) unrooted staggered/2—flavor overlap; b) rooted stadfferflavor overlap matching. The open circles in
b) show the residue from matching a 1-flavor overlag,[ = 0.5) to anunrootedstaggered action.

Fig.3b is the important plot for the rooted staggered action as it shows ticeieest fixed
physical masses as the continuum limit is approached. While the residue tbrftvor rooted de-
terminant is larger than in the unrooted case, the continuum approachtisadiest least quadratic
in a. The taste violating term in Egs.(2.4) and (3.3) becomes irrelevant in the continuum limit,
a result that justifies the rooting procedure. As a test of the sensitivityiomatching method
we also show the residue of an attempted matching of a 1-flavor overlap adtiioan unrooted
staggered action, which clearly dagst vanish in the continuum limit.

4.4 Application

We can now apply our knowledge of the matching overlap mass in mixed actiotasions.

The first observable we consider is the topological susceptiliiy /7, as it is very sensitive to
the sea quarks. We define the topology through the zero—modes of theednogarlap operator
used in the matching and evaluate it on gauge ensembles generated with tawedftel/or/taste
staggered and overlap actions at various masses. This is the simplest@asi&ed action simula-
tions as the observable does not depend on the valance quark massklyRoere interesting is the
scalar condensatg/y), which diverges in the limit of vanishing staggered mass due to insufficient
suppression of topologically non—trivial configurations [5].

Results fromL/a = 20 lattices are shown in Figs.4 and 5, where the difference of the stalggere
and overlap ensemble at the same bare fermion mass is very evident, iispéciaall masses.
After shifting the staggered data to the matching overlap mass, excelleenagneis achieved.
One should note that the agreement for the 2 taste/flavor case, wheriffd¢hende between the
actions is entirely due to local lattice artifacts, is not better or significantlyrdiffiethan the rooted
1 taste/flavor case. The agreement on our finer lattices is equally goectmdls to smaller quark
masses.

5. Conclusion

The rooted staggered action is likely non—local in the physically relevageraf small quark
masses. However, this does not invalidate the rooted action as long asntHeaab terms are
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Figure 4: The topological susceptibility on the Figure 5: Also the scalar condensajg on a
L/a= 20 ensemble. After shifting the staggeredstaggered background agrees with the overlap re-
data to the matched overlap mass, almost perfestilt when it is evaluated using the matched over-
agreement with the overlap data is achieved. lap mass.

irrelevant and scale away in the continuum limit. Here we demonstrated thatithieed the case
in the 2—dimensional Schwinger model. We studied how the staggered acfiens fibm a chiral
overlap action along a line of constant physics as the continuum is a@aEor both the un-
rooted (as expected) and rooted staggered action we found that #vekde reduces to irrelevant
operators plus local pure gauge terms. Nevertheless care is requiedihig the continuum limit
of staggered fermions such that the non QCD-like region is avoided.
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