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The notion of a non-perturbative effect is ambiguous if fuiees the subtraction of a perturbative
part defined by a diverging series. A common procedure cinisigiropping the order of mini-
mal contribution and the higher orders. This allows us ttaigovery accurately the one-instanton
effect for the double-well potential. For the one plaqugttege theory, an exact analytical expres-
sion can be written for the non-perturbative part. We repamént attempts to extend this approach
to the average plaquette of quenched QCD. Our goal is to sxpine non-perturbative effects in
terms of expressions of the for()8e 8 calculable semi-classically. The situation is compli-
cated by zeroes of the partition function in the compBepglane (presumably near®+i0.2).
We discuss two methods to describe the intermediate ane ¢aier behavior of the perturbative
series. One is inspired by mean field theory (logarithmicHjaeheat) and reproduces accurately
the known perturbative series with only two free parametérgliagrammatic interpretation of
this fact is still lacking. The other is based on infra-redaenalons with a factorial growth show-
ing up at order larger than 20 and a possible effective thexeypretation. These extrapolations
are compatible with the non-perturbative part of the pléigueeing proportional ta*. We pro-
pose an exponential parametrization to the correctionkeautiversal part of the beta function
and find results compatible with the suggestiomdtorrections made by C. Allton.
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In these proceedings, we will discuss the definition of the nonpertueopéixt of the average
plaquette and its parametrization in terms of expressions of theA@%e CP. There is a reason-
able case that this is feasible for Wilson action in the fundamental and thastizA, B andC
could be calculable semi-classically. Technical details regarding recemtass are available in a
recent preprint [1]. Instead of trying to cover most of the material dised in this preprint, we
will rather emphasize selected points that we have disccused with some @frtiogppnts during
the conference.

We would like to emphasize that the commonly used “rule of thumb” for pertweadries (at
a given coupling, you drop the order in perturbation theory that givesrtiallest contribution and
all the higher orders), is a poor man substitute for regularizing the dingeperturbative series by
introducing a large field cutoff or a large action cutoff as recently preg¢2, 3]. The field cutoff
can then be fixed by an optimization procedure based on the strong coegfwagsion [4, 5].
However, a first step consists in understanding the error associatethigifimple procedure. For
a generic asymptotic seriés~ 3 a 3K, we can define the error at order

k
JAY = Anumerical - - . 1
k(B) = An (B) I;alﬁ (1)

If we assume thafy, ~ B la.1, (for B large enough) and that the large order behavior is
|ay| ~ |C1||C2|¥T (k+C3), we find [1] that the minimal error is

Miny [A] ~ v/27Ca (G| /B) /2 Coe a1 | 0

This equation works well for the ground state of the anharmonic oscillateranine exponential
suppression can be interpreted semi-classically. For the double-well; iorks if we take the av-
erage of the two lowest energy states in order to cancel the one-instdféon The one-instanton
is a non-perturbative effect larger than the error estimated from thertieedader behavior of the
perturbative series.

The separation between the perturbative and the non-perturbatiie aaomputational com-
modity. There is no claim that this separation has a physical meaning, unkesso find observ-
ables that are zero in perturbation theory, for example the differeaebr the two lowest energy
states for the double-well potential. A simple example [5] where one carxaetdyewhat is in the
non-perturbative part is teU(2) one plaquette model

2(B) = [ dUe PRI _ Zpor (B) + Zupen (B) ©
Su(2)

Due to the compactness 80J(2), there is no large field problem. It is possible to expands

a converging sum of-dependent coefficients, denotad23) below, multiplying3—%. We can
get the regular perturbative series by decompactifying the integrals, nwamding the tails of
integration from B to o, in order to gef3-independent coefficients. At first sight this amounts to
neglecting e2? effects, however, this affects the large order of the perturbativificieats, which
now grow at a factorial rate. In order to minimize the perturbative errertrancate the series at
orderr(k*) the integer closest to the one obtained with the procedure discussed(abevef.
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[1, 5] for details). More explicitly,

r(kx

)
Zeert (B) = (Bm)~¥/%2/2 gAk@o)ﬁ—k, (4)
k=
with rk+1/2)
— ok —tek+1/2
A(X) =2 k!(1/2k)/o dtettky/2 . 5)
The nonperturbative part consists in the dropped terms minus the added tails
Znpert (B) = (R(B) —T(B)) (6)
RB) = (B 2242 S A(2B)B, ™
r(k-)+1
_ " T(k+1/2) 2
_ 3/291/2 k! (K+1/2) k+1/2
T(B) = (Bm) /<27 x kZOB K(12—K 2Bdte tgktd/z (8)

A detailed calculation shows that at leading ordeand T are both proportional t—3/2e=2#,
while their difference is proportional t82e 2 as predicted by the asymptotic behavior of the
regular perturbative series. One can improve the accuracy of thielbgdeeping a finite range of
integration for the coefficients and optimizing the range using the strondicg@gxpansion. If the
order is large enough, it essentially amounts to use the b@un@p3) provided by the compactness
of the group [5].

The same program can in principle be carried on for quen€i&din 4 dimensions, however,
keeping track of multiple tails of integration is a non-trivial task. We believettiebest approach
is to use the stochastic perturbation method [6] with boundaries or perioditdaoy conditions
in configuration space. Before attempting this calculation for quenched, @€Dhave considered
models where independent numerical calculations are possible, namelarigigle integrals and
ground states of simple quantum mechanical systems [7, 8]. In absebcaimdary, stochastic
perturbation theory works quite well for these models, however, intiaducboundary is a delicate
procedure in part because results may depend on few configurakibridaides has investigated
three methods, reflection at the boundary, rejection of updates goirgf the boundary and a-
posteriori elimination of configurations outside of the boundary and cdedlin favor of the third
method. We are planning to compare these methods for quenched QCD.

In the following, we will restrict the discussion to the accuracy of the ragopéaturbative
series of the average plaquette in quenched Q€B: (3, D = 4)

P(B)=(1/=/Vp)<%(1—(1/N)ReTI(Up))> ' (9)
We used a series ii~! calculated [6] up to order 10. A figure with coefficients up to order 16
is also available [9]. Extrapolated estimators [10] indicate Bhat (1/5.74— 1/83)%% in good
agreement with a ratio analysis [11]. This type of behavior is not expedtld power series in
B~ should have a zero radius of convergence because the plaquetteesttscontinuously at

B — + [12]. In addition, a singularity exactly on the real axis is not seen in 2ivatare [10] of
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Figure 1. Zeroes of the partition function in the complBxplane for a 8 lattice using reweightings @ =
5.55 (red), 5.6 (cyan), 5.65 (magenta), 5.7 (green) anddiu@). The dots correspond to distinct bootstraps
and the solid lines to the successive radius of confidence

P. Such a singularity would requires massless glueballs which are not kiooaxist for the pure
fundamental action. A plausible explanation [10] is that the singularity is sligifitiyhe real axis.
If we assume an approximate logarithmic behavior for the specific heat asaimfieéd theory

—0P/oB OIn((1/Bm—1/B)*+T?), (10)

we obtain peaks and series compatible with what we know provided tiAat B, < 5.9 and
0.001< I < 0.01. This suggests the existence of zeroes of the partition function in thdeofhp
plane with

0.03~ 0.00182 < |ImB| < 0.013% ~ 0.33 (11)

A. Denbleyker has performed direct searches for such zeroas ngsireigthing methods. On a
4% attice, he found a pair of zeroes ngd#= 5.55+i0.1, clearly within the region of confidence and
in good agreement with the results do’4attices of Ref. [13]. We are not aware of existing results
on larger isotropic lattices. On &,8ve found no clear evidence for zeroes witn3| < 0.03. Our
preliminary findings are shown in Fig. 1. The radii of confidence haes lggawn without taking
into account the autocorrelations which should slightly reduce these radikeldhe 4 case, there
are no zeroes clearly within the respective radii of confidence. Asttias of confidence increases
like the square root of the logarithm of the number of independent caafigus, it will be difficult
to find direct evidence for zeroes wittmf3| =~ 0.1. Consequently, it would be useful to introduce
a positive adjoint term in the action in order to move the zero closer to thexisallthis works,
we could follow the zero aBagjoint i decreased and try to extrapolatgBi@joint = 0.

A pair of complex singularities nedf = 5.8 is about all we need to account for most of the
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known terms of the perturbative series. Integrating the mean field andatg ¢10), we obtain

Poert. = Z)bkﬁ-k ~K(Lio(B~Y/(Brt+ir))+hc, (12)
k=

with Liz(xX) = T,_oX*/k? . We fixedl" = 0.003 and obtaine# = 0.0654 andB3,=5.787 using the
known values ofg anda;p. As shown in Ref. [1], this simple model agrees well with the numerical
values from order 3 to 16. This fact should have a simple Feynman diagtarpretation.

A pair of complex singularities cannot govern the asymptotic behavior ofiass#hat must
have a zero radius of convergence. At this point, the best we can dose t@hat is known in the
continuum about the Borel transform of the series [14, 15] and asthahé can be connected to
the lattice [16] by a coupling redefinitigh= B(1+d;/B+...):

— — t =
Poert. = Z)bkﬁ‘k O /t “dte P (1t 33/16m2) 1204121 (13)
K= 1

Note thatt; = O corresponds to the UV cutoff, = 16n2/33 to the Landau pole. In the continuum,

it has been argued [15] that it is necessary to introduce the gluon esaigan order to keep low
enough and regularize the perturbative series, exactly as we advacdadtice gauge theory. In

the following, we take, = co in order to get a regular perturbative series (using the one-plaquette
analogy). This model has a minimal perturbative error of the form

Min |Ax| =~ 3.5(5)204/12171/267(16112/33)5_ (14)

Except for the -1/2 in the exponent this is the two loop RG invariant. This is iecgnt of the
B~1/2 found in the one plaquette case. Following this analogy further, Eq. ¢i4ldn principle
be compared with what would be obtained from the probability distributionriergaquette after
integrating over all the other links.

The two models defined by Egs. (12) and (13) yield similar coefficients upder 0-25.
Above order 25, the renormalon model has larger coefficients growimpatorial rate. D. Du has
been trying to put together the two types of behavior in the framework oéigm relations. These
two models are compatible [1] with the idea already put forward [11, 9] tleahtm-perturbative
part of the plaquette scales lieé with a() defined with the force method [17, 18].

The question is now: can we parametr&g) in a way that would be suggestive from a semi-
classical point of view? For this purpose, we start with a Taylor exparj&if] of a(f3) expressed
in units ofro = 0.5 fin the interval 57 < 3 < 6.92:

In(a/ro) = —1.6804— 1.7331(3 — 6) +0.7849(B — 6)* — 0.4428(B — 6)° . (15)
We propose the parametrization [1]
din(a/ro)/dB = —(41%/33) + (51/121)B 1 + Ae BP . (16)

As shown in Fig. 2, in the interval.8 < B < 6.4, the derivative of Eq. (15) can be fit using
A= —1.3510 andB = 2.82. It should be noted that wh¢h> 6.4, there is a significant difference
between the derivative of Eq. (15) and the derivative of a similar eswa provided in a previous
paper [18]. The difference is hardly visible if we plot{#ro) in the interval 56 < 3 < 6.6, but
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Figure 2: Left: din(a/ro)/dB using Ref. [17] (thick dashes), Ref. [18] (small dashes)@ndparametriza-
tion (solid red line). Right: estimation of the (approximptonstanC in Eq. (16).

when we take the derivative, the large constant term disappears aodhiicgerm that varies the
most between the two expressions is amplified by a factor 3. This explains gfeediffierences
observed in Fig. 2 whe > 6.4. It would be interesting to try to get more accurate Taylor
expansions in this specific region.

We can now integrate and fit the constant of integration der@ted

In(a/ro) = C — (412/33)B + (51/121)In(B) — (A/B)e BF . (17)

Fig. 2 shows tha€ = 4.5281) provides a good fit in the region where we have good agreement
with both Refs. [17, 18]. A nice plateau appears betwgen 5.9 and 6.3. The extremal values
in this interval are 4.5272 and 4.5282. It is also possible to obtain the lattite/Scdrom the
constant of integratio€, namely/A_ = exp(—C)/ro ~ 4.4 MeV. It is possible to use Eqg. (17) to
predict Ina/ro) at largef. for instance, a8 = 7.5, we obtain -3.59 (for -3.63 in Ref. [19]) and
-4.74 atB = 8.5 (for -4.81 in Ref. [19])

Note that the value oB seems consistent with the idea [20] of usm@rt. corrections for
this quantity. The symbadyet refers to the one-loop or two-loop expression which in the short
B interval considered here can hardly be distinguished from each dtherassumption oa%em
corrections fixe® = 8 /33~ 2.4 which is close to the value 2.82 obtained above.

There remain many challenges: check the exponential parametrizationsantostely at
large, calculate the parameters determined numerically semi-classically, find thespreanec-
tion between the non-perturbative part of the plaquette and what is caflefubn condensate in
the continuum and find improved perturbative methods with a smaller error andaksover region.

We acknowledge valuable discussions at the conference with many pantegnd in partic-
ular C. Allton, M. Creutz, F. di Renzo, A. Duncan and A. Velytsky. Thésgarch was supported
in part by the Department of Energy under Contract No. FG02-91E6410A. Denbleyker was
supported by a Van Allen research grant. M. Naides was supportedRigUagrant NSF PHY-
03535009.
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