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We introduce a finite volume renormalization scheme forNkklajorana-component @) in-
variant Gross-Neveu model. Universal observables areatkfimt are accessible to precise nu-
merical simulation in various discretizations and allowda extrapolation to the continuum limit.
Here first numerical results with Wilson fermions are repdrtForN = 2 they reproduce exact
finite volume continuum results in the massless Thirring elo@urN = 8 data are ready for
comparison for instance with staggered results in the éutur

XXIVth International Symposium on Lattice Field Theory
July 23-28, 2006
Tucson, Arizona, USA

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&@vmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:uwolff@physik.hu-berlin.de
mailto:korzec@physik.hu-berlin.de

Gross-Neveu model Ulli Wolff

1. Introduction

In lattice QCD several fermion discretizations are in use in current dynasiicalations.
Beside the very costly recent variants with chiral symmetry, Wilson and staddgermions are
the standard choices with their well-known relative merits and weakneBseshe latter choice,
unphysical multiples of 4 degenerate flavors (in 4 dimensions) can onlydieeal by the ‘rooting’
procedure which is under much debdie [1], as universality of the camtinimit is not guaranteed
any more by the locality of the action.

We thought that in this situation a two-dimensional study, where the continutrapelation
can be controlled better than in QCD, would be a valuable check. GrossuNeodels (GN)[]2]
and the Schwinger-model come to mind. The latter is closer to QCD in being e aayy, while
the renormalization structure of GN is more realistic as its coupling is dimensipeiessasymp-
totically free forN > 3, instead of being superrenormalizable. For us the latter aspect prevails

The work of the ALPHA collaboration has demonstrated, that a precisincom extrapo-
lation becomes feasible for quantities like the Schrédinger functional of Q@Rre the system
size is used as a physical scale to probe the field theory. We henceucomassimilar finite vol-
ume renormalization scheme for GN. Also here the finite size supplies aneidfsaele allowing
the mass to be tuned to a critical valusorresponding to the (here discrete) chirally symmetric
continuum limit. With the coupling as the only remaining free parameter, the situaticontes
similar to the massless QCD Schrédinger functional. While the aim clearly is to igsgctieme
also for staggered fermions, possibly with ‘rooting’, in the future, as@né we only have Wilson
simulations to report on.

2. Model and renormalization scheme

We consider the action density of the Euclidean theory

f—ifT‘g(ﬂﬂLm)f—g—z(fT(ff)z (2.1)
2 8 ' '

Here the Grassmann spinércaries a two-valued spin and &hvalued flavor index such that
an internal ON) symmetry arises and the antisymmetric maﬁfbobeys%yu%‘l = —yJ . With
this symmetry no other 4-fermion interaction is possible and the model is renocaivlalias it
stands. This is in contrast to the chiral GN model witiDirac fields, which shares continuous
chiral symmetry with QCD, but allows for two independent couplings and d trie with Wilson
fermions [3]. This makes it much more difficult to approach a definite contintheory and we
hence restrict ourselves for our fermion-testbed to thid)@fvariant class. Fom = 0 the action
(B.3) has the additional discrete invariance

§— e (2.2)

that breaks spontaneously fdr= o [B].

Lt vanishes if the chiral symmetry is preserved by the regularization.
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Our action [2]1) has so far referred to the continuum. In the Witserl. lattice regularizaton
we have to replace a
Oy — 0y, M—m— Ed“d[j (2.3)

with the forward @), backward §*) and symmetric ff) lattice derivative. Now [(2}2) is not a
symmetry at finite cutoff. It emerges however in the continuum limit for a suitalsiengm =
me(g%).

For our finite volume scheme we consider the fiéldn aT x L torus with (anti)periodic
boundary conditions in space (time)

Ex+T0)=-&(x), &(x+L1)=+&(x), (2.4)

i. e. a spatial ring at finite temperature. In the following we t@ike L, aspect ratio one, and the
smallest momentum then & = (77/T,0). In @ momentum version of our finite size scheme we
formulate a complete set of normalization conditions on 2- and 4-point fursctiesimg external
momentatp,. We however here prefer to use correlations at physical separatiapace-time
for numerical reasons and also in the hope — supported by perturbatiany thto minimize cutoff
effects in this way.

We Fourier-transform in space only

€ (x0,p) = ay e "), £ (%0) = £(x0,0) (2.5)

and impose normalizations on the 2-point function
0= (§7(T/4%¢(0)). (2.6)
Zg = &—E (E(T/2%é(0). 2.7)

Now égr = Zgl/zf is a renormalized field, and the first condition is required by (2.2) andrdates

the critical massn.. Note that at separatioh/2 the analogous equation holds as a consequence
of antiperiodicity and time-reflection invariance for ailland could not serve to defimg,, while

with our choice we found good sensitivity to do so. On the lattice dnig that are multiples of

4 must be simulated to obtain a scaling situation, an acceptable restriction. Finatigranalized
coupling is obtained from

G = o (T /2681 0) EL(T/2)%ER0(0)), (28)

where the subscripts ofk refer to two specific flavor values. For Wilson fermions we have per-
formed a 1-loop calculation and obtain

am. = —(N—1)Kg?+0O(a*g?,g*), K =0.384900179460 (2.9)
Zs = 1+0(g% (2.10)
|
0& = T —Tza <gz+ {(N -2 (% +cO> +C1+O(a)] g4+O(g6)> (2.11)
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with
co = —0.483524477 c; =0.30965176 (2.12)

The 1-loop value fom. agrees with the literaturd][4] § 6]. The coefficient of the logarithm in
(B:11) has the well known value and vanishes for the Thirring ¢ase2. Note that a finite
coupling renormalization as well as the linearly divergent mass renormatizatostill there.

3. Simulation

The standard approach for GN is to factorize the 4-fermion term with arsmadiary field

2
b = [Map(oye 508 4 (3.1)
X

Usually a Gaussian field is employed givifig

z— / I doe 3% PiA(a)N, (3.2)

where the Pfaffian results from integrating gutThe operator
A(0) = 6 (yu0y +m+go —ad*d) (3.3)

can be taken real antisymmetric in the Majorana representatign dfience for eveN we have
the non-negative weight @ [PfAIN = [detA” A]N/4 which may be represented by/2 real pseud-
ofermions for an HMC approach.

4, Massless Thirring model (N = 2)

We have extended the well known exact continuum solution of the Thirrindeinio our
finite geometry and plan to report on this elsewh@le [7]. This allows to grediay correlation
functions. As usual, correlations of the U(1) current

-

L o
4%, p1) = /0 dxy €4 @y, () (4.1)

are particularly easy to obtain, where we use one Dirac field hdde=a®. In this case the sym-
metry (2.2) gets automatically promoted to an axial U(1). Correlations depetiteacontinuum
couplingg®™. By varying it we produce the curve in Fid. 1. Note that the quantity orxtaes is
the thermal expectation value of the squared total charge on our ring.

In the lattice transcription we employ the exact Noether U(1) current thest dot renormalize.
We take the continuum limit by extrapolating frdmia = 16. .. 48 for valuegy = 0.4 and 07 of the
bare lattice coupling. The mass is tunedrodefined by [[2]6) on each lattice. The extrapolations
for g= 0.4, leading to the lower point in Fif] 1 are shown in Hig. 2. The other point is silmiia
with larger errors.
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o extrapolated continuum values
-0.46} —— exact solution I
~ — gcont — 10
= -0.47}
[a\]
=
~— -0.48}
= — g™ =~ (.782
<.
2 -0.49}
_05 P gcont ~ 0415
cont — O
-051f___, _ Y e
0.4 0.45 0.5 0.55

(70(0,0)j0(T/2,0)) = (Q?)

Figure 1. Exact universal relation between current correlationt@rhassless Thirring modeé\l = 2).
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Figure 2: Continuum extrapolations producing the lower point in g.

5. Gross Neveu model (N = 8)

Here the coupling renormalizes similarly to QCD. We now adjust the coudlinf) {@.he
valueggr = 0.38 and take the continuum limit as discussed before. Our universaiabgzin this
caseis

(ka0 p) =~ -2 & P (€7 Oy ) 1)

for scalablexy values and admissiblg,. Two examples are shown F{g. 3 and Hig. 4.

6. Remarkson staggered fermions

For naive Majorana lattice fermions, i. e. leaving out theaj part in {2.8), we find the usual
taste multiplicity 2 in D dimensions (each momentum component around f/aj. If one now
tries to ‘spin-diagonalize’ by transforming§ one can only achieve a reduction fact&¥/2 ! in

2At finite N only a finite number of moments im are relevant allowing in principle also other distributions
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Figure 3: Continuum limit of a Gross-Neveu correlationNi= 8.
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Figure4: Asin Fig.B, but for a different time separation.

contrast to 2/2 for Dirac fermions wheny, ¢ are changed independently. The reason is #hat
can only be reduced to22 blocks in the Majorana case but not diagonalized. Since the Majorana
form is natural for GN we simply deal here with naive fermions and 4 tastesof ofN flavors).

The 4-fermion interaction term naively would read in 2-momentum space

(TlL)4 pl,..Z,m 5? (> m) EiT(pl)?éi(pZ) &' (P2)€¢j(pa).

tast&mlxmg

As indicated, there would be contributions with for instarmeand p, in different corners of

the Brillouin zone which mix tastes in the bilinears that are flavor-scalar. Troislgm was al-
ready solved in an early effort to simulate the modgl [8]. An additional fagtpcos(a(p: +
P2)u/2) cosa(ps+ pa)u/2) under the sum is expected to enforce taste symmetry in the continuum
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limit. In position space this corresponds to distributing the interaction term optxcaette. In
this form one then naively expects an additional taste symmetry in the contilmaitrwhich may
reproduce results with exact flavor symmetry in the Wilson formulation.
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