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Matter accreting onto compact objects should be magnetized. We solve the magnetohydrody-
namic equations governing axisymmetric flows around compact objects and present all possible
solution topologies for the accretion flow. We divide the parameter space spanned by the energy
and angular momentum of the flow in terms of the flow topologies. We separate the region of pa-
rameter space which produce standing magnetohydrodynamic shock waves in the accretion flow.
We also show regions of the parameter space where the shocks may oscillate. In the astrophysical
context, these solutions are very important as they could give rise to Quasi-Periodic Oscillations
seen in hard X rays.
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1. Introduction

Magnetic field is ubiquitous in nature and indeed, in many astrophysical circumstances it is
dynamically important. After the earlier attempts of Mestel (1967) and Weber & Davis (1967) for
solar winds, Chakrabarti (1990) generalized these works for rotating compact stars and black holes
and found a few solution topologies which are relevant to accretion and winds. Takahashi et al.
(1990) and his group solved the MHD equations in Kerr geometry while looking for possible ways
to extract energies from black holes. They discussed the occurrences of the sonic points. Nitta et al.
(1991) solved the Grad-Safranov equation and found a few of the global topologies. However, so
far, the study of solution topologies and their dependence on the flow parameters was not explored.
In the present paper, we are focusing our attention to study the trans-magnetosonic flow properties
in accretion around compact objects in presence of both radial and toroidal magnetic fields. We
explore the dependence of the solution topology on the parameter space spanned by the energy and
angular momentum of the flow. For a given pair of Alfv́en radius and velocity, we could identify
as many as eighteen types of solution topologies and divide the parameter space according to the
nature of the solution. We also study the properties of the standing magneto-hydrodynamic shock
waves. Sometimes, a high energy spectrum is observed up to ∼ 20MeV which could be achieved
through shock acceleration of electrons. Thus, it is important to look for solutions which will
include standing or propagating shocks. These accelerated charged particles will produce power-
law synchrotron radiations which could be an important tool in explaining the spectra of black hole
candidates. In addition, at the shock (in the so-called magnetized CENBOL region), soft photons
are energized through inverse Comptonization by the hot electrons. In this paper, we concentrate
on the solutions of the magnetohydrodynamic (MHD) problem which include standing shocks and
classify the parameter space which allow shocks in the accretion flows.

2. Governing equations and Magnetosonic point analysis

We start with a stationary, axisymmetric, thin, non-self-gravitating, non-dissipative, highly
conducting, wedge-shaped, adiabatic flow on the equatorial plane of a compact star which is de-
scribed by the Paczyński-Wiita (1980) potential. We use the flow model to be the same as that
of Chakrabarti (1990) and Das & Chakrabarti (2006). Magnetohydrodynamic flow equations on
the equatorial plane are as follows: (a) The energy conservation equation: E = 1

2 ϑ 2
r + 1

2 ϑ 2
φ +

γ
γ−1

p
ρ + Φ(r)− Bφ BrΩr

4πρϑr
, (b) The angular momentum conservation equation, L = rϑφ −

Bφ Brr
4πρϑr

, (c)
The mass flux conservation equation, Ṁ = ρϑrr2, (d) The radial magnetic-flux conservation equa-
tion, Brr2 = C1, and, (e) Maxwell’s equation (E = −ϑ ×B = 0) for a perfectly conducting fluid
on the neutron star surface: r(ϑrBφ −ϑφ Br) = −ΩC1, where, we assumed that on the surface
r = rn, ϑr = 0. In case of a non-rotating black hole, where ϑφ = 0 on r = rg, the horizon, the
above condition becomes, r(ϑrBφ −ϑφ Br) = rgϑrgBφg = A (constant). Here, ϑr and ϑφ are the
radial and azimuthal components of velocity, Br and Bφ are the radial and azimuthal components
of magnetic field, φ(r) = −

GM
(r−2GM/c2)

is the gravitational potential due to the compact object and
Ω is the constant angular velocity of the neutron star or the black hole. Furthermore, P, ρ and γ
being the pressure, density and adiabatic index respectively. We assume the Bθ component to be
negligible since the flow is considered to be sufficiently thin. We rewrite the energy expression as,
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E = E −LΩ = 1
2 ϑ 2

r + na2 + 1
2

(ϑr−1)2Ω2r2

(ϑrr2−1)2 + Φ(r)− (ϑr−1)Ω2r2

ϑrr2−1 . In this study, lengths will be mea-
sured in units of the Alfvén radius ra, velocities will be measured in units of the Alfvén speed ϑa

and time will be measured in units of ra/ϑa. In this case, L = Ω.
In order to study the magnetohydrodynamics flow properties we first calculate the radial ve-

locity gradient (dϑr/dr) by simplifying governing equations which is obtained as (Chakrabarti,
1990), dϑr

dr = N
D , where, the numerator N is given by, N = ϑrr[(ϑrr2

− 1)2(ϑr − 1)Ω2 + ( 2a2

r2 −

1
r

dΦ
dr )(ϑrr2

− 1)3 +ϑrΩ2(1 − r2)(ϑr − 1)(1 + ϑrr2)] and the denominator D is given by, D =

(ϑ 2
r − a2)(ϑrr2

− 1)3
− (r2

− 1)2ϑ 2
r r2Ω2. It is clear that both the numerator and denominator si-

multaneously become zero at the Alfvén point (r = 1,ϑr = 1). Apart from the Alfvén point, they
may vanish at some other points also. These points are called the critical points and are commonly
known as the magnetosonic points. At these points, the flow velocity becomes equal to the speed
of the magnetosonic waves. At the outer edge of the accretion disk, the radial velocity of the flow
remains sub-magnetosonic. For neutron star accretion, matter accretes on to the star surface sub-
magnetosonically. Thus the flow may or may not become super fast- or slow-magnetosonic before
touching the star surface. For a black hole accretion, however, the inner boundary condition is
different but unique. Here the flow must cross the horizon super-magnetosonically, i.e., the flow
must cross the magnetosonic point at least once before entering into the black hole.

3. Behaviour of parameter space, solution topologies and MHD shocks

In Fig. 1 (top-left), we divide the parameter space spanned by the energy and angular momen-
tum of the flow into various regions depending on the nature of the solution topologies. Accretion
flow solutions in black hole and neutron stars differ only through inner boundary conditions. For
a pair of flow parameters, the curves representing the solutions topologies remain the same, and
only depend on the flow parameters. For each topology we need to put a boundary condition to
decide whether the solution is for black hole or for a neutron star. The curve ADE is obtained for
the special case where the radial velocity ϑr = 0 at all the sonic points. Below the curve ADE , no
solution is possible. The curve PG is obtained by considering the flow velocity at the magnetosonic
point (occurring at r < 1) is exactly same as the Alfvén velocity. Other curves are obtained fol-
lowing Chakrabarti(1990) where the magnetosonic points with (a) r < 1,ϑr < 1, (b) r < 1,ϑr > 1,
(c) r > 1,ϑr < 1 and (d) r > 1,ϑr > 1 are denoted as ‘Bondi-like Slow’, ‘Bondi-like Fast’, ‘Rota-
tional Slow’ and ‘Rotational Fast’ respectively. The Bondi-like slow magnetosonic points exist in
a region surrounded by the boundary PBEGHP. The Rotational-slow magnetosonic points exist in
a region surrounded by the boundary ABCFGUA (for L > 0). The Rotational-fast magnetosonic
points exist in a region surrounded by the boundary RDEQR and L = 0 and E > 0. The Bondi-like
fast magnetosonic points exist in a region surrounded by the boundary QGUQ (for L > 0). The
region surrounded by the boundary SKTS and shaded by the dots indicates the region in which
magnetosonic shocks may form. The region of the parameter space shaded by the dot-dash lines
denotes the forbidden region for the flow solution. The region surrounded by the boundary PCK-
OTUQP has the solutions topologies to form magnetosonic shocks, but the standing shocks do not
form as the shock conditions are not satisfied.

In order to form a shock, the accretion flow must have at least two magnetosonic points since
the inner boundary condition is that a black hole accretion is necessarily super-magnetosonic on
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Fig. 1: (Top-left:) Division of parameter space according to solution topologies.(Top-right:) Example
of complete solution topology with standing magnetohydrodynamic shock waves. (Bottom-left & right:)
Solutions of the magneto-hydrodynamic flows for various (E ,L) pairs of conserved parameters. Greek
alphabets mark different types of solutions drawn with parameters from different regions marked in Top-left
figure. Along horizontal axis is the radial distance and along vertical axis is the radial velocity.

the horizon and the shock conditions have to be satisfied in between these two points. Here the
flow, after crossing the rotational-slow magnetosonic point, will pass through a (slow) shock and
subsequently pass through a Bondi-like slow magnetosonic point provided the entropy at the inner
magnetosonic point is higher compared to that at the outer magnetosonic point. The difference in
entropy is guaranteed to be generated at the shock (through turbulence, for instance) if the shock
conditions are fulfilled. In Fig. 1 (bottom-right), we present an example of the shock solution,
obtained using parameters from the region SKTS, which possesses standing, slow-magnetosonic
shock. We chose Alfvén velocity and radius as ϑa = 1010 cm s−1 and ra = 107cm respectively
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while the central mass was chosen to be 10M� for illustration purpose. The parameter (E , L) pair
is (1.5, 1.45) and the shock locations is rs = 1.153. The standing shock locations is also marked
with the vertical dashed lines. The single arrowed curve represents the solution towards a black
hole. The double-arrowed curve, which is sub-Alfvénic throughout the flow is appropriate for a
neutron star accretion without a shock transition. The triple-arrowed vertical line (dash-dotted)
indicates a typical shock transition at the boundary of the neutron star. The post-shock region
where radial flow is slowed down and flow becomes hotter, is the most important region as this is
the place where hard X rays are generated.

The entire parameter space is sub-divided further according to the nature of the solutions. We
scanned the complete parameter space and obtained eighteen distinct types of solutions as shown
in Fig. 1 (top-left and bottom-right). Each solution type is identified by a Greek alphabet α ,β , ..

etc. These Greek alphabets in the parameter space denote the regions of the parameters for which
the solutions are drawn. In Fig. 1(bottom-left & right), the Bondi-like (slow/fast), Rotational slow
and Rotational fast magnetosonic points are denoted by m1, m2, and m3 respectively. For L = 0,
since ϑφ = Bφ = 0, the solutions become identical to Bondi type.

4. Concluding Remarks

We presented all possible solution topologies of a magnetohydrodynamic, quasi-equatorial,
adiabatic flow around compact objects and divided the entire parameter space in terms of different
types of the flow topologies. We show that in a significant region the flow satisfies the standing
shock conditions while in another region shock conditions are not satisfied but as the inner mag-
netosonic points have higher entropy than the outer magnetosonic points, the flow is likely to pass
through a shock which oscillates as in the case of the hydrodynamic flow. The post-shock region
inverse Comptonizes soft photons from the pre-shock flow either from the Keplerian disk or from
the synchrotron radiation and re-emits them as hard X-rays (Chakrabarti & Mandal, 2006). Since
MHD shocks occur closer to the black hole, they give rise to the high frequency quasi-periodic
oscillations of hard X rays as observed in several black hole candidates.
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