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1. Introduction

Scope of the lecture notes: These notes comprise two hours of lecture. The style is rather ele-
mentary and detailed. Therefore, only a few subjects have been presented and the choice of subjects
is rather subjective, reflecting the preferences of the author. The notes are intended to offer access to
some sections of model building for neutrino masses and lepton mixing from where the interested
reader can go on with more advanced literature.

General introductions to neutrino physics, with emphasis on neutrino oscillations, are found
in [1]. For recent developments in models for neutrino masses and mixing see[2]. Ref. [3] contains
aspects of both, phenomenology and theory, and could be used as reading complementary to the
present notes. In Refs. [1, 2, 3] one can find extended bibliographies, whereas here we confine
ourselves to work closely related the presented subjects. For reviews ofthe results of neutrino
oscillation experiments see [4].

Introductory remarks: The results of the neutrino oscillation experiments have shown that at
least two neutrinos are massive and lepton mixing exists in analogy to quark mixing. What does
this important finding—one of the most spectacular discoveries in the recenthistory of particle
physics—mean for model building? To obtain a reasonable perspective one should take into ac-
count the following remarks. It is no problem to accommodate neutrino massesand mixing, the
problem is rather to explain its characteristic features. Note that in the quarksector the mass and
mixing problem is still unsolved, after so many decennia and despite numerousattempts. It could
very well be that the mass problem is decoupled from mixing problem, i.e., perhaps one can find
models which explain mixing but not the masses. The mass problem could be morefundamental
than the mixing problem in the following sense. Some mixing angles might find an explanation
in mass ratios, see for instance the conjecture that the Cabibbo angle is approximately given by
sinθc ≃

√

md/ms wheremd andms are the masses of the down and strange quark, respectively [5].
Some of the mixing angles in the lepton sector might be, in a first approximation, independent of
fermion masses, for instance the atmospheric mixing angleθatm might be 45◦ and thus maximal,
and the small angleθ13 could zero. The meaning of these angles will be explained in Section 2.

As for accommodating neutrino masses and mixing, one could add to the multiplets ofthe
Standard Model right-handed neutrino singletsνR, just as one has right-handed quark singlets in
the SM, and require conservation of the total lepton numberL. Then one would have in the lepton
sector a complete analogy to the quark sector, with massive Dirac neutrinos and lepton mixing.

Why are we not happy with this picture? Each of the three series of charged fermions (up
quarks, down quarks and charged leptons) has a strong hierarchy inthe masses. For instance,
in the up quark sector we havemt/mu ∼ 4×104. Moreover, the quark (CKM) mixing matrix is
not extremely far from the unit matrix. This is in accord with the idea that both thequark mass
hierarchy and the CKM matrix being close to unity are founded in hierarchical structures of the up
and down quark mass matrices.1 On the other hand, in the lepton sector it is true there is a strong
hierarchy in the charged lepton masses withmτ/me ∼ 3500, however, when compared with the
neutrino masses, experiments tell us that the largest neutrino mass is about six orders magnitude
smaller than the electron mass. Thus the relation between charged lepton masses and neutrino

1This could of course be merely a prejudice.
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masses is very different from the relation between down and up quark masses. Furthermore, it
came as a surprise that the lepton mixing or PMNS matrix is very far from unity. Consequently,
one would like to understand the following issues:

1. Why are neutrino masses much smaller than charged lepton masses?
There are two generic “proposals” for a solution of this problem:

• The seesaw mechanism,

• radiative neutrino masses.

2. Can one reproduce the special features of neutrino masses and lepton mixing? The special
features are

F1: a solar mixing angle ofθ⊙ ≃ 34◦+3◦

−2◦ , which is large but non-maximal,

F2: an atmospheric mixing angle ofθatm≃ 45◦±8◦, which is large and perhaps maximal,

F3: a small elementUe3 of the lepton mixing matrix, with|Ue3|2 ≡ s2
13 . 0.02,

F4: a small ratio of neutrino mass-squared differences∆m2
⊙/∆m2

atm∼ 0.03.

The approximate ranges for the mixing angles refer to 90% confidence level and are taken from [4].

The framework: The framework of the lectures is defined by the following assumptions:

• We consider simple extensions of the lepton sector of the SM, i.e., the considered gauge
group isG = SU(2)L ×U(1)Y.

• As for extensions of the fermion sector, we take into account the addition ofright-handed
neutrino singlets.

• We discuss all possible extensions of the scalar sector, compatible withG.

• We use flavour symmetries for enforcing certain features of the PMNS matrix.

• We assume Majorana nature of the neutrinos.

At this point we emphasize that an important question is whether the explanationof the features
F1–4 is independent of the general fermion mass problem. Here we assumethat this is the case.
Otherwise, one would necessarily have to start with Grand Unified Theories, where quark masses
and the CKM matrix is inseparably connected with the problem of lepton masses and the PMNS
matrix. Another interesting question, to be solved by future experiments, is how close to 45◦ is
the atmospheric mixing angle and how close to zero is the small angleθ13. For the time being,
sizeable deviations of these angles from these values are allowed. However, if it turns out that the
atmospheric mixing angle is very close to maximal andθ13 very close to zero, this could hint at a
non-abelian flavour symmetry.

The plan of the lecture notes is as follows. In Section 2 we discuss Majoranamass terms
and the parameterization of lepton mixing. Section 3 introduces extensions of theSM by right-
handed neutrino singlets, together with the seesaw mechanism, and extensionsby additional scalar

3



P
o
S
(
P
2
G
C
)
0
0
1

Neutrino Physics Grimus Walter

multiplets. In Section 4 we consider the so-calledµ–τ-symmetry in the neutrino mass matrix. A
model which realizes this symmetry is constructed in Section 5. Finally, in Section 6we present
some general considerations about about multi-Higgs models, with soft breaking of lepton numbers
in the mass terms of the right-handed neutrino singlets.

2. Majorana neutrinos and lepton mixing

Majorana mass terms: We begin with some algebra. All spinors used here are 4-spinors. In the
space of 4-spinors the charge-conjugation matrixC is defined by

C−1γµC = −γT
µ , (2.1)

where theγµ denote the Dirac matrices. We will always work in a representation of the Dirac
matrices whereγ0 is hermitian and theγ j ( j = 1,2,3) are anti-hermitian. The properties ofC are

CT = −C, C† = C−1. (2.2)

Whereas the first property follows from Eq. (2.1) alone, the second one takes into account the
hermiticity assumption.

The charge-conjugation operation is defined by

ψc ≡Cψ̄T = CγT
0 ψ∗. (2.3)

The projectors

PL ≡ (1− γ5)/2, PR ≡ (1+ γ5)/2 (2.4)

produce so-called chiral 4-spinors. A spinorψL is called left-handed ifPLψL = ψL. Then, using
C−1γ5C = γT

5 , it is easy to show that

PR(ψL)
c = (ψL)

c . (2.5)

Thus, a charge-conjugate chiral spinor has the opposite chirality.
A mass term is a Lorentz-invariant2 bilinear in the Lagangian. A Dirac mass term has the

structureφ̄RψL +H.c., with independent chiral spinorsφR, ψL. Note that in the mass term different
chiralities are necessary, otherwise the mass term would be identically zero.If we have only one
chiral spinorψL at our disposal, we can use Eq. (2.3) to form a right-handed spinor. Inthis way,
we obtain a Majorana mass term (see also [3])

−1
2

m
(

(ψL)
cψL +H.c.

)

=
1
2

mψT
L C−1ψL +H.c. (2.6)

The spinors transform as

ψL → exp
(

−iαµνσ µν/4
)

ψL with σ µν =
i
2

[γµ ,γν ] (2.7)

2For fermions it is actually invariance underSL(2,C), the covering group of the proper orthochronous Lorentz
group.
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under Lorentz transformations, where the transformations are parameterized by the six coefficients
of the real antisymmetric matrix

(

αµν
)

. Invariance of the term (2.6) is guaranteed because

exp
(

−iαµνσ µν/4
)T

C−1exp
(

−iαλρσλρ/4
)

= C−1 due to C(σ µν)
T C−1 = −σ µν . (2.8)

The factor 1/2 in Eq. (2.6) is necessary in order to interpretm as the mass appearing in the Dirac
equation because this factor is canceled in the functional derivative of the Lagrangian with respect
to ψL since it occurs twice (see second part of Eq. (2.6)).

Mass term for Majorana neutrinos: According to the discussion above, we write down a Ma-
jorana neutrino mass term

Lmaj =
1
2

νT
L C−1

MννL +H.c., (2.9)

whereνL contains an arbitrary number of left-handed neutrino fields. Since fermionfields are
anticommuting andC is antisymmetric, we haveνT

aLC
−1νbL = νT

bLC
−1νaL, whereνaL, νbL are 4-

spinor neutrino fields occurring inνL. Therefore, the neutrino mass matrixMν is a symmetric
matrix, i.e.

M
T
ν = Mν , (2.10)

which is complex in general.
The diagonalization of this mass matrix proceeds according to a theorem, firstproven by

Schur [6]: For any symmetric and complex matrixMν there exists a unitary matrixV such that

VT
MνV = m̂≡ diag(m1,m2,m3), (2.11)

where themj , the neutrino masses, are real and non-negative. The matrixV can be decomposed as

V = eiϕ̂ U diag(eiρ ,eiσ ,1), (2.12)

with a diagonal phase matrixeiϕ̂ . The neutrino mass eigenfieldsν̂L are then given by the relation
νL = Vν̂L, with Majorana fields and mass term given by

νM = ν̂L +(ν̂L)
c , Lmaj =

1
2

ν̂T
L C−1m̂ν̂L +H.c., (2.13)

respectively. The Majorana fieldsνM fulfill (ν̂M)c = ν̂M.
Let us from now on assume that we work in a basis where the charged lepton mass matrix is

diagonal. Then the phases ineiϕ̂ are unphysical in lepton mixing because they can be absorbed
into the left-handed charged lepton fields in the following way. Consider the charged-current La-
grangian

−Lcc =
g√
2

W−
µ ℓ̄LγµνL +H.c.=

g√
2

W−
µ ℓ̄LγµVν̂L +H.c. (2.14)

The charged-lepton fieldsℓ = ℓL + ℓR are Dirac fields, thus their mass term isℓ̄Rm̂ℓℓL +H.c., where
m̂ℓ is the diagonal mass matrix. Then, defining new fieldsℓ′L = e−iϕ̂ℓL andℓ′R = e−iϕ̂ℓR, eiϕ̂ disap-
pears fromLcc without making reappearance in the mass term.

Note that the phase factorseiρ , eiσ of V arephysicalfor Majorana neutrinos and the phasesρ,
σ are called Majorana phases. We cannot absorb them in the neutrino fields, just as we absorbed
eiϕ̂ in the charged-lepton fields. If we absorb them inν̂1L, ν̂2L, we shift the masses in Eq. (2.13)
according tom1 → e−2iρm1, m2 → e−2iσ m2 and the new fields are not in the mass eigenbasis.
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The lepton mixing matrix: According to the discussion before, the lepton mixing matrix is given
by

UPMNS = U diag(eiρ ,eiσ ,1). (2.15)

Using the convention of [7], we decompose the unitary matrixU as

U = U23U13U12 =









1 0 0

0 c23 s23

0 −s23 c23

















c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

















c12 s12 0

−s12 c12 0

0 0 1









. (2.16)

We use the abbreviationsc23 ≡ cosθ23, etc. The angleθ23 is also called atmospheric mixing angle
because it is the protagonist in atmospheric and long-baselineνµ ↔ ντ oscillations, with corre-
sponding mass-squared difference∆m2

atm. The mixing angleθ13, for which only an upper bound
exists, is responsible forνe ↔ νµ oscillations. The angleθ12 appears in solar or very long-baseline
oscillations; the latter are at present only realized in the KamLAND experiment[4]. The corre-
sponding mass-squared difference can always be chosen as∆m2

⊙ = m2
2−m2

1 with m2 > m1. The
phaseδ is analogous to the CKM phase and can, in principle, be probed in neutrino oscillations [1].

With the conventionm2 > m1, there are two physically distinct cases form3: m1 < m2 < m3,
the “normal” spectrum, andm3 < m1 < m2, the “inverted” spectrum. In both cases,∆m2

atm can be
chosen as the largest mass-squared difference.

3. Extensions of the SM

3.1 Right-handed neutrino singlets

Multiplets: In this section we extend the set of SM fields by right-handed neutrino singlets. Thus
we haveG-multiplets with the following quantum numbers:

SU(2)×U(1)

DL
1
2 Y = −1 left-handed doublets,

ℓR 0 Y = −2 right-handed charged lepton singlets,

νR 0 Y = 0 right-handed neutrino singlets,

φ 1
2 Y = 1 Higgs doublet,

φ̃ 1
2 Y = −1 Higgs doublet.

The irreducible representations ofSU(2) are denoted by weak isospin,Y is the hypercharge. The
scalar doublet̃φ is not an independent degree of freedom. It is related toφ by

φ̃ ≡ iτ2φ ∗ or φ =

(

φ+

φ0

)

⇔ φ̃ =

(

φ0∗

−φ−

)

, (3.1)

whereτ2 is the second Pauli matrix and in the second part of the equation we have assumed—
without loss of generality—that the lower component inφ is the one with zero electric charge.
Clearly, the hypercharge of̃φ is opposite to the hypercharge ofφ , but underSU(2) both fields

6
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transform in the same way: supposeU ∈ SU(2) andφ → Uφ , then alsoφ̃ → U φ̃ . The reason is
that

U†iτ2U
∗ = iτ2 ⇔UT iτ2U = iτ2, (3.2)

which is a specialSU(2) property.
There are two motivations for introducing theνR. First of all, in the SM the left-handed quark

doublet fields have right-handedSU(2)-singlet partners. From that point of view there is no reason
for omitting theνR. Before the discovery of neutrino masses, the omission ofνR was fine because
in that way the neutrinos stayed massless. The second motivation comes fromGUTs based on
the gauge groupSO(10). In such models all chiral fermions of one family are contained in the
16-dimensional irreducible spinor representation.3 Let us do the counting of the chiral fields per
family:

2×2×3 (quarks: up, down; L, R; colour) + 2×2 (leptons:ℓ, ν ; L, R) = 16

Thus, inSO(10) GUTs theνR is automatically included. For an introduction intoSO(10) GUTs
see for instance [8].

The Lagrangian: Let us assume that we have the multiplets of the SM plus oneνR per family;
in addition, we allow for violations of all lepton numbers, including the total leptonnumberL, and
an arbitrary number of Higgs doublets. Then the Lagrangian is given by

L = · · ·−∑
j

[

ℓ̄Rφ†
j Γ j + ν̄Rφ̃†∆ j

]

DL +H.c.+

(

1
2

νT
RC−1M∗

RνR+H.c.

)

, (3.3)

where the dots indicate the gauge part. TheνR mass term is of Majorana form and is present
because we allow forL-violation. The requirement ofL conservation would forbid that term and
lead to Dirac neutrinos. In analogy to Eq. (2.10), we haveMR = MT

R. Spontaneous symmetry
breaking of the SM gauge group induces the mass matrices

Mℓ = ∑
j

v∗j Γ j , MD = ∑
j

v j∆ j with 〈φ0
j 〉0 = v j , (3.4)

whereMℓ is the mass matrix of the charged leptons and thev j are the vacuum expectation values
(VEVs) of the Higgs doublets. The matrixMD goes together withMR to form a Majorana mass
term for left-handed neutrino fields [9]:

Lν mass=
1
2

ωT
L C−1

MD+M ωL +H.c., (3.5)

with the 6×6 matrix

MD+M =

(

0 MT
D

MD MR

)

and ωL =

(

νL

C(ν̄R)T

)

. (3.6)

Let us sketch the derivation of Eqs. (3.5) and (3.6). We have to reformulate all mass terms
with (νR)c. For this purpose we reformulate Eq. (2.3) as

ν∗
R = −C−1γ0(νR)c, (3.7)

3This is actually a representation of its covering groupSpin(10).
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from (νR)cc = νR we derive
ν̄R = (νR)cc = −[(νR)c]TC−1 (3.8)

and from Eq. (2.1) we obtain
γT

0 C−1γ0 = −C−1. (3.9)

Using Eq. (3.8) we treat first the Dirac term:

−ν̄RMDνL = [(νR)c]TC−1MDνL =
1
2

{

[(νR)c]TC−1MDνL +νT
L C−1MT

D[(νR)c]
}

. (3.10)

Dealing with the Majorana term, we first take its complex conjugate, then use Eq.(3.7) and finally
Eq. (3.9):

(

1
2

νT
RC−1M∗

RνR

)†

=
1
2

ν†
RCMRν∗

R =
1
2

[−C−1γ0(νR)c]TCMR[−C−1γ0(νR)c] =

1
2

[(νR)c]T
(

−γ0T
C−1γ0

)

MR(νR)c =
1
2

[(νR)c]TC−1MR(νR)c. (3.11)

Equations (3.10) and (3.11) are in exactly the form we to have.

The seesaw mechanism: In the mass matrix (3.6),MD is generated by the VEVs of the Higgs
doublets, therefore, its elements are at most of the order of the electroweak scale. On the other
hand, the scale ofMR is not protected by the gauge symmetry and there is no reason why it cannot
be much larger. Indeed the basic assumption of the seesaw mechanism [10]is mD ≪ mR, wheremD

andmR are the scales ofMD andMR, respectively. A more precise formulation of this assumption

is that the largest eigenvalue of
√

M†
DMD is much smaller than the smallest eigenvalue of

√

M†
RMR.

To derive the seesaw mechanism, we are looking for a unitary 6×6 matrixW which disentan-
gles small from large scale. In the derivation we follow Ref. [11] and makethe ansatz

W =

(√
1−BB† B

−B†
√
1−B†B

)

, (3.12)

such that

WT
MD+MW =

(

Mν 0

0 M
heavy
ν

)

(3.13)

The right-hand side of this equation expresses the disentanglement of smalland large scales. The
matrixW is modeled after a 2×2 rotation matrix. The square root is understood as Taylor expan-
sion

√
1−x = 1− 1

2 x− 1
8 x2−·· · . Before we go on we do some parameter counting. The matrix

B is a general complex 3×3 matrix and thus has 18 real parameters, andW has the same number
of parameters. A general unitary 6×6 matrix has 36 parameters. ThusW has 18 parameters less
and it is impossible to diagonalizeMD+M with W. The lack of 18 parameters agrees with the form
of the matrix on the right-hand side of Eq. (3.13):Mν andM

heavy
ν are both symmetric and would

need each a unitary 3×3 matrix for diagonalization, thus 2×9 = 18 further parameters.
Equation (3.13) determinesB as a function ofMD andMR, by requiring disentanglement:

√

1−BTB∗MD

√

1−BB†−BTMT
DB†−

√

1−BTB∗MRB† = 0. (3.14)

8
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By expandingB in mD/mR, Eq. (3.14) allows for a recursive solution. One can show [11] that
B = B1+B3+B5+ · · · , whereBn is of order(mD/mR)n. The first term inB is easily obtained from
Eq. (3.14) as

B1 =
(

M−1
R MD

)†
, (3.15)

and up to second order [12]

W ≃
(

1− 1
2 B1B†

1 B1

−B†
1 1− 1

2 B†
1B1

)

. (3.16)

Then one finds the leading term of the light-neutrino mass matrix [10]:

Mν = −MT
DM−1

R MD. (3.17)

This is the famous seesaw formula. In leading order, the mass matrix of heavyneutrinos is given
by

M
heavy
ν = MR. (3.18)

An interesting feature is that corrections toMν andM
heavy
ν suppressed by(mD/mR)2, i.e., by the

square of the small ratiomD/mR [11]. This is a consequence of the zero in the upper left corner of
MD+M—see Eq. (3.6).

We note that the whole procedure sketched here goes through with an arbitrary number of
right-handed neutrinos. We could choose for instance two or more than threeνR. However, if we
chose only one right-handed neutrino, then two neutrino masses are zero,which is in disagree-
ment with the two non-zero mass-squared differences; in this case an additional contribution to the
neutrino masses has to be supplied from elsewhere.

Let us for the moment assume that the charged-lepton mass matrix is non-diagonal and it gets
diagonalized by(U ℓ

R)†MℓU ℓ
L = m̂ℓ. In that case the lepton mixing matrix is given byUM = (U ℓ

L)†V
and there arethree sources for mixing: Mℓ, MD andMR. Thus the seesaw mechanism is a rich
playground for model building.

To conclude the seesaw part, we want make a scale consideration. Choose as a typical neutrino
massmν ∼

√

∆m2
atm∼ 0.05 eV andmD ∼ mµ,τ . Then,mR ∼ 108÷1011 GeV. This is fairly close

to the GUT scale. Could the seesaw scalemR be identical with a GUT scale of typicallyMGUT ≃
2×1016 GeV? This is not possible without some amount of finetuning becausemD . v, where the
VEV v ≃ 174 GeV represents the electroweak scale. Then, according to the seesaw mechanism
mν ∼ v2/MGUT ∼ 1.5× 10−3 eV, which is too small. On the other hand, in the minimal SUSY
extension of the SM gauge coupling unification happens atMGUT and the question is if in a certain
GUT model an intermediate scale like the seesaw scale is allowed. It has been shown that the so-
called minimal SUSYSO(10) GUT is ruled out for this reason [13]. This problem is an interesting
research topic.

3.2 Additional scalar multiplets

The leptonic SM multiplets are characterized in the beginning of Section 3.1. With these

9
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multiplets one can form leptonic bilinears with the following quantum numbers [14]:

D̄L ⊗ ℓR
1
2 ⊗0= 1

2 Y = −1 φ doubletY = +1,

DL ⊗DL
1
2 ⊗ 1

2 =0⊕1 Y = −2

{

η+

∆

singlet Y = +2,

triplet Y = +2,

ℓR⊗ ℓR 0⊗0=0 Y = −4 k++ singletY = +4.

This is the complete SM list. One can addνR⊗νR with trivial quantum numbers 0⊗0 = 0, Y = 0,
which tells us that this bilinear can couple to a real or complex scalar singlet. Wewill not consider
this possibility in these lecture notes.

In the list above, apart from the trivial case with weak isospin 1/2, there are three interesting
new scalar multiplets, which enable massive Majorana neutrinos. Three such models, correspond-
ing to these multiplets, will be discussed in the following.

The Zee model: The essential ingredient of this model is the charged scalarη+ [15, 16]. In
addition to the SM multiplets, it needs a second Higgs doublet. The relevant parts of the Lagrangian
are

L = · · ·+ fαβ DT
αLC−1iτ2DβL η+−µ φ†

1 φ̃2η+ +H.c., (3.19)

where fαβ is the Yukawa coupling matrix ofη+. Without loss of generality we can assume that the
charged-lepton mass matrix is diagonal and, therefore,α andβ indicate the flavour, i.e.,α , β =

e, µ, τ. Theη+ Yukawa interaction has a “Majorana” structure and is Lorentz-invariantjust as the
Majorana mass term discussed in Section 2. The Pauli matrixτ2 acts on theSU(2) doubletsDβL,
i.e., it hasSU(2) indices. Equation (3.2) expresses the invariance of theη+ Yukawa interaction
underSU(2).

In Section 2 we have derived that a Majorana mass matrix is symmetric—see Eq.(2.10). We
can apply an analogous reasoning here, however, due to the antisymmetryof τ2, we have

DT
αLC−1iτ2DβL = −DT

βLC−1iτ2DαL and fαβ = − fβα . (3.20)

Why does the Zee model need two Higgs doublets? The Zee model aims at radiative neutrino
mass generation. Since there is noνR, the neutrinos have to be of the Majorana type, with violation
of the total lepton numberL. Therefore, a necessary condition for non-zero neutrino masses in the
Zee model isL-violation. Considering theη+ Yukawa interaction in Eq. (3.19) and the Yukwawa
interactions of the Higgs doublets, leads us to the following lepton number assignment:

DL ℓR φ1,2 η+

L 1 1 0 −2

Clearly, such a lepton number is explicitly broken by theµ-term in Eq. (3.19), and this is the
only term in the total Lagrangian which breaksL. Suppose we have only one Higgs doublet, i.e.,
φ1 = φ2 ≡ φ . Then it follows thatφ†

1 φ̃2 = φ†φ̃ ≡ 0 and theµ-term is absent and without it the
neutrinos remain massless.

A restricted version of Zee model has been proposed by Wolfenstein [17]. In that version only
φ1 couples to leptons. This is guaranteed if we introduce the symmetry

DL → iDL, ℓR → iℓR, φ1 → φ1, φ2 →−φ2, η+ →−η+. (3.21)

10
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Figure 1: The 1-loop Feynman diagram for the generation of neutrino masses in the Zee model.

Note that in this case the Yukawa coupling matrix ofφ1 is proportional to the diagonal mass matrix
of the charged leptons. The 1-loop Feynman diagram which generates neutrino masses is depicted
in Fig. 1. The vertex at the right corner of the diagram has a charged-lepton mass from the Yukawa
coupling, another one comes from the mass insertion on the fermion line. The diagram describes
a transitionνL → (νL)

c, in accord with a Majorana mass term—see Eq. (2.6). Taking into account
thatMν is symmetric, one finds [15]

Mν ∝
(

(m2
α −m2

β ) fαβ

)

or Mν =









0 a b

a 0 c

b c 0









. (3.22)

Thus the restricted version of the Zee model generates the most general Majorana mass matrix with
zeros on the diagonal. After removal of unphysical phases, one obtains a real 3-parameter mass
matrix. However, the mass matrix (3.22) is not viable [18], because it predicts that solar mixing is,
for all practical purposes, maximal.

Thus the restricted version is ruled out. However, if both Higgs doublets are allowed to couple
in the lepton sector, i.e., there are two different coupling matrices at the rightcorner of the diagram
in Fig. 1, thenMν has in general non-zero entries in the diagonal, non-maximal solar mixing is
allowed and there is no contradiction with experimental results [19]. On the other hand, though
neutrino masses are suppressed because they are generated radiatively, further suppression is re-
quired to get neutrino masses of order 1 eV. If we perform such a suppression by small Yukawa
couplings of theη+, a rough estimate is| fαβ | . 10−4.

The Zee–Babu model: In this model [16, 20], the SM multiplets are enriched by the scalar
singletsη+ andk++. The relevant parts of the Lagrangian are given by

L = · · ·+ fαβ DT
αLC−1iτ2DβL η+ +hαβ ℓT

αRC−1ℓβRk++− µ̃ η−η−k++ +H.c. (3.23)

Now we use arguments similar to those for the Zee model. The Yukawa coupling matrix of k++

has the property

hαβ = hβα . (3.24)

If we assign lepton numbersL, thenL(k++) = −2, butL is explicitly broken by thẽµ-term. Thus,
we obtain radiative neutrino masses, with neutrinos of the Majorana type.
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Figure 2: The 2-loop Feynman diagram for the generation of neutrino masses in the Zee–Babu model.

The Zee–Babu model has only one Higgs doublet. According to the discussion of the Zee
model, at 1-loop the neutrino masses are still zero, but they appear at the 2-loop level. The relevant
Feynman diagram is depicted in Fig. 2. Examination of that diagram shows that

Mν ∝ f̃ m̂ℓh̃
∗m̂ℓ f̃ , (3.25)

with f̃ = ( fαβ ), h̃ = (hαβ ) andm̂ℓ = diag(me,mµ ,mτ).
The properties of the model are the following. Sincef̃ is antisymmetric, the lightest neutrino

mass is zero. Assuming neutrino mass hierarchy requires the fine-tuning [21] |hµµ | : |hµτ | : |hττ | ≃
1 : (mµ/mτ) : (mµ/mτ)

2. With scalar masses in the TeV range, small neutrino masses require| fαβ |,
|hαβ | . 0.1. Thus, with 2-loop suppression, neutrino masses turn out to be naturallysmall. As a
bonus, rare decays likeτ → 3µ andµ → eγ are within reach of forthcoming experiments.

We want to finish our discussion of the two models for radiative neutrino massgeneration with
a remark. Via the loop diagrams the hierarchy of the charged-lepton massesis transferred into the
neutrino mass matrix, which is, therefore, naturally of hierarchical structure. Thus, finetuning of
Yukawa couplings seems to be unavoidable in order to reproduce large lepton mixing.

The triplet model: That model is obtained by enlarging the SM by a scalar triplet∆. This triplet
is conveniently written as a 2×2 matrix withSU(2) indices, parameterized by

∆ =
3

∑
j=1

δ jτ j , (3.26)

where theτ j are the Pauli matrices. The relevant terms of the Lagrangian are given by[22]

L = · · ·+ 1
2

gαβ DT
LαC−1iτ2∆DLβ +H.c.−M2Tr∆†∆−

(

µ∆ φ†∆φ̃ +H.c.
)

−·· · (3.27)

The first dots indicate the gauge part, the second ones the missing terms of thescalar potential
which are not relevant for our discussion. Observing that theτ2τ j are symmetric forj = 1,2,3, we
find

gαβ = gβα . (3.28)

The triplet coupling isSU(2)-invariant for the following reason. WithU ∈ SU(2), the trans-
formation properties are

DL →UDL, ∆ →U∆U†. (3.29)

Using the parameterization (3.26), the latter equation demonstrates that~δ transforms according to
the adjoint representation ofSU(2), i.e., as anSU(2) triplet. Invariance underSU(2) of the triplet
term is again proved by using Eq. (3.2).
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Let us now determine the charge-eigenfields of the triplet. First we note thatits hypercharge is
Y∆ = 2. In general, the electric charge in a multiplet of the SM gauge group is given byQ= T3 +
1
2 Y, whereT3 is the thirdSU(2) generator, i.e., the third component of weak isospin. According to
Eq. (3.29), we thus obtain

Q∆ =
1
2

[τ3,∆]+∆ (3.30)

or
(

δ3 δ1− iδ2

δ1 + iδ2 −δ3

)

Q→
(

δ3 2(δ1− iδ2)

0(δ1 + iδ2) −δ3

)

. (3.31)

Therefore,

∆ =

(

H+
√

2H++

√
2H0 −H+

)

, (3.32)

with H0 = 1√
2
(δ1 + iδ2), H+ = δ3, H++ = 1√

2
(δ1− iδ2).

Assigning lepton numbers as in the previous models, we findL(∆) = −2, andL is explicitly
broken by theµ∆-term. However, according to Eq. (3.32), the triplet has a neutral component which
can have a VEV

〈H0〉0 =
1√
2

vT . (3.33)

Thus in the triplet model there is a tree-level neutrino mass matrix [22]

Mν = vT(gαβ ). (3.34)

Since the triplet VEV disturbs the famous tree level relationMW/MZ = cosθW for W mass,Z mass
and Weinberg angleθW, there is an upper bound|vT |/v . 0.03 from the LEP data [23]. However,
in order to have small enough neutrino masses from a small VEV,vT must be much smaller, namely
vT ∼ 0.1÷1 eV.

How to get a smallvT? Mechanisms in analogy to the seesaw mechanism, where the order of
the neutrino masses is given bym2

D/mR with mD ≪ mR, have been proposed such that the triplet
VEV is obtained by an analogous order of magnitude relation. Such mechanisms are usually called
type II seesaw [24] (see also [8]). In that context the original seesaw mechanism is called type I.
Here we follow Ref. [25]. We assume

M, |µ∆| ≫ v, (3.35)

wherev≃ 174 GeV is the VEV of the Higgs doublet. Replacing in the scalar potential of Eq. (3.27)
the fields by the VEVs, we obtain

〈V〉0 = M2v∗TvT +v2µ∆vT +v2µ∗v∗T + · · · (3.36)

The dots contain terms of orderv4 andv2
Tv2. The stability condition with respect tovT requires

∂
∂v∗T

〈V〉0 = M2vT +v2µ∗ +O(vTv2) = 0, (3.37)

which results in
|vT | ≃ |µ|v2/M2. (3.38)
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Indeed,vT is of the formv2/mS, wheremS is a large scale in the scalar sector. We want to emphasize
that the mechanism for generating a small non-zerovT has a peculiar feature. It requiresM2 > 0,
thus without the VEV of the Higgs doublet the triplet VEV would be zero. On theother hand, the
VEV of φ is non-zero because in the scalar potential the termφ†φ has anegativecoefficient.

In summary, in the triplet model, generation of small neutrino masses requires asmall triplet
VEV vT , which in turn requires a new new heavy scale in scalar sector, in analogyto the seesaw
mechanism of type I. Seesaw mechanisms of type I+II are naturally obtainedin SO(10) GUTs, see
for instance [8]. If both types are together, the mass matrix (3.6) looks like

MD+M =

(

ML MT
D

MD MR

)

, (3.39)

with the seesaw formula

Mν = ML −MT
DM−1

R MD. (3.40)

Note that now all terms inB = B1 + B2 + B3 + · · · in an expansion in 1/mR appear—see for in-
stance [11], for a thorough discussion. The matrixML need not necessarily be present at tree level,
as it the case in the triplet model, but can also appear via loop corrections in some models—see for
instance [26].

4. The µ–τ-symmetric neutrino mass matrix

We depart from the Majorana mass term (2.9) and the basis where charged-lepton mass matrix
is diagonal. We consider the mass matrix

Mν =









x y y

y z w

y w z









with x, y, z, w∈C, (4.1)

which is symmetric underµ–τ interchange—for early references on this mass matrix see [27, 28].
Theµ–τ interchange symmetry inMν can be defined as [29]

SMνS= Mν with S=









1 0 0

0 0 1

0 1 0









. (4.2)

Let us now discuss the phenomenology of the mass matrix (4.1). We immediately guess one
eigenvector:









x y y

y z w

y w z

















0

1

−1









= (z−w)









0

1

−1









. (4.3)

Since this vector is real, it can be identified with one of the columns in the diagonalization matrix
V, defined in Eq. (2.11). The first component of this eigenvector is zero,thus we identify it with
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the third column ofV because|Ve3| = s13 (see Eqs. (2.12) and (2.16)) is compatible with zero.
Therefore, we also obtainm3 = |z−w|. InspectingU of Eq. (2.16) we find with the eigenvector
above that

θ23 = 45◦, θ13 = 0◦, (4.4)

and the parameter measured in atmospheric and long-baseline experiments is maximal, i.e.,

sin22θatm = 4|Uµ3|2
(

1−|Uµ3|2
)

= 1. (4.5)

Because of Eq. (4.4), the matrixV is given by

V = diag(eiϕe,eiϕµ ,−eiϕµ )









cosθ sinθ 0

− sinθ√
2

cosθ√
2

1√
2

− sinθ√
2

cosθ√
2

− 1√
2









diag(eiρ ,eiσ ,1). (4.6)

That the diagonal phase matrix to the left ofU has this specific form, can be proved from theµ–τ
interchange symmetry. Note we have slightly changed the convention ofU compared to Eq. (2.16):
the third line has been multiplied by−1.

Equation (4.4) represents the predictions of the mass matrix (4.1) and implies that it is com-
patible with all data. If one can generate such a mass matrix in a model by means of symmetries,
on would have an explanation for large atmospheric mixing and smallθ13. Obviously, theµ–τ-
symmetric mass matrix is more specific than that and will be tested by future experimental efforts.

Sinces13 = 0, the CP phaseδ is meaningless. The mass matrix (4.1) has no predictions for the
masses; they are free and all types of mass spectra are admitted. Theµ–τ-symmetric mass matrix
is thus an example of what was mentioned in the introduction: there might be mass-independent
predictions for mixing angles and the mass problem is deferred to a more fundamental theory.

In the neutrino sector, we have nine observables: three neutrino masses, three mixing angles
and three CP phases. If we remove the unphysical phases from the massmatrix (4.1), for instance
by making the first row and first column real by a phase transformation, weare left with six param-
eters. That mass matrix gives two predictions—see Eq. (4.4)—and the phase δ drops out fromU .
Thus we are left with six observables, the masses, the solar mixing angle andthe Majorana phases,
which are not predicted by Eq. (4.1); this is in agreement with the six physical parameters inMν

counted above.
One can ask the question if a small perturbation of theµ–τ-symmetric mass matrix destroys

the predictions (4.4). It turns out that they stable form1,2,3 .
√

∆m2
atm [30]. The predictions are

unstable for a degenerate neutrino mass spectrum wherem1,2,3 ≫
√

∆m2
atm.

The matrixU in Eq. (4.6) may be further specified by fixing the solar mixing angle by [31]

sin2 θ =
1
3
, (4.7)

which leads to the so-called tri-bimaximal mixing matrix








cosθ sinθ 0

− sinθ√
2

cosθ√
2

1√
2

− sinθ√
2

cosθ√
2

− 1√
2









=









2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3
− 1√

2









. (4.8)
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Here the solar mixing angle isθ ≃ 35.3◦, which is in good agreement with the experimentally
allowed range. Models which explain tri-bimaximal mixing exist, but they are quiteinvolved [2].

5. A model for the µ–τ-symmetric neutrino mass matrix

Multiplets and symmetries: The model to be discussed here was published in [28]. Its multiplets
are those of the SM, however, it needs three Higgs doubletsφ j ( j = 1,2,3), and the fermion sector
contains in addition three right-handed neutrino singlets, in order to generate light neutrino masses
by the seesaw mechanism. The symmetries and symmetry breakings of the model are the following:

⊲ Three groupsU(1)Lα (α = e,µ,τ), associated with the family lepton numbersLα , which are
softlybroken by theνR mass term (note that a fermion mass term has dimension three);

⊲ Z
(tr)
2 : DµL ↔ DτL, µR ↔ τR, νµR ↔ ντR, φ3 →−φ3, which is spontaneously broken by the

VEV of φ3;

⊲ Z
(aux)
2 : νeR, νµR, ντR, φ1, eR change sign, which is spontaneously broken the VEV ofφ1.

These symmetries determine the Yukawa Lagrangian:

LY = −y1D̄eLνeRφ̃1−y2
(

D̄µLνµR+ D̄τLντR
)

φ̃1

−y3D̄eLeRφ1−y4
(

D̄µLµR+ D̄τLτR
)

φ2−y5
(

D̄µLµR− D̄τLτR
)

φ3 +H.c. (5.1)

By virtue of the family lepton numbersLα , all Yukawa coupling matrices are diagonal.

The neutrino mass matrix: Consider the mass term

LM =
1
2

νT
RC−1M∗

RνR+H.c. (5.2)

of the right-handed neutrinos. According to the way we have stipulated oursymmetries,LM is
invariant underZ(tr)

2 but not under theU(1)Lα . Thus we find

MD = diag(a,b,b) and MR =









m n n

n p q

n q p









. (5.3)

Using the matrixSof Eq. (4.2), theZ(tr)
2 invariance translates into

SMDS= MD, SMRS= MR. (5.4)

But then we also haveSMνS= Mν , becauseMν is obtained fromMD andMR by the seesaw
formula (3.17). Thus the model discussed here provides us with theµ–τ-symmetric neutrino mass
matrix discussed in the previous section and has, therefore, the predictions of Eq. (4.4).

Two remarks are at order. As mentioned in the previous section, the massesare free in this
model, therefore, we have no explanation for∆m2

⊙/∆m2
atm∼ 0.03. However, this ratio is not very

small and is a function of the elements inMD andMR. Due to the seesaw mechanism, the entries
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in Mν are sums over a product of four such elements times the common factor 1/detMR. Thus
the ratio of mass-squared differences can easily be reproduced if the elements inMD,R differ by no
more than factors of 2÷3. The second remark refers to radiative corrections. Theµ–τ-invariance
of Mν is expected to hold at the seesaw scale. Evolution ofMν according to the renormalization
group from the high scale down to the low scale introduces deviations from the predictions (4.4);
however, one can check that this effect changesMν very little [32]. Only for a degenerate spectrum
with a common massm0 ≃ 0.2 eV, s13 is at most 0.1 at the electroweak scale, whereas sin22θ23

remains very close to one. However, the correction tos13 goes roughly withm2
0 and becomes

quickly small for smallerm0.

The model and the groupO(2): The symmetries described before generate a non-abelian sym-
metry group becauseU(1)Lµ ×U(1)Lτ andZ(tr)

2 do not commute, but they generate the group
O(2) [33], as we will demonstrate now.

First we give an abstract characterization ofO(2), a symmetry group in the plane. It contains
rotationsg(ω) (ω ∈R) with the multiplication lawsg(ω +2π) = g(ω), g(ω1)g(ω2) = g(ω1+ω2).
Another element is the reflexions at thex-axis with s2 = e, wheree is the unit element. The
reflexionsand the rotationsg(ω) generateO(2), if we stipulate the relationsg(ω) = g(−ω)s.

The irreducible representations ofO(2) are easily found. There are two 1-dimensional repre-
sentations

1 : g(ω) → 1, s→ 1, 1′ : g(ω) → 1, s→−1, (5.5)

and there is an infinite series of 2-dimensional irreducible representationscharacterized byn∈N:

2(n) : g(ω) →
(

einω 0

0 e−inω

)

, s→
(

0 1

1 0

)

. (5.6)

Now we make the identifications

s↔ Z
(tr)
2 , g(ω) ↔ eiω(Lµ−Lτ ). (5.7)

Then(DµL,DτL), (µR,τR), (νµL,ντL) are in 2(1), φ3 is in 1′, the remaining fields transform trivially.
The full symmetry is group is then characterized by [33]

U(1)Le ×U(1)(Lµ+Lτ )×O(2)×Z(aux)
2 . (5.8)

The problem of mµ ≪ mτ : Actually, theµ–τ interchange symmetry, as realized in the symme-
tries of the model, would rather suggest that|y4v2| ∼ |y5v3| and, therefore,mµ ∼ mτ . However, we
need

mµ = |y4v2 +y5v3| ≪ mτ = |y4v2−y5v3|. (5.9)

A technical solution of this finetuning problem was given in [34].

It consists in introducing a new symmetry

K : µR →−µR, φ2 ↔ φ3, (5.10)
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without introducing new multiplets. This is an important point because this makes the model
simpler, since the number of free parameters is reduced. ImplementingK in the Yukawa La-
grangian (5.1), we obtain

y4 = −y5 and
mµ

mτ
=

∣

∣

∣

∣

v2−v3

v2 +v3

∣

∣

∣

∣

. (5.11)

As we want to show now, implementation ofK in the Higgs potential leads tov2 = v3 and,
therefore,mµ = 0. If we are able to breakK softly by terms of dimension two in the Higgs potential,
we will havemµ 6= 0, and thusmµ ≪ mτ in a technically natural way.

Since we need softK-breaking, we assume that the Higgs potential consists of two terms,

V = Vφ +Vsoft, (5.12)

whereVφ is K-invariant. It is easy to check that the softK-breaking term of dimension two is
unique:

Vsoft = µ2
soft

(

φ†
2 φ2−φ†

3 φ3

)

. (5.13)

To proceed further we mention thatall Z2 symmetries listed in the beginning of this section, are
broken spontaneously. This means thatV is invariant under separate sign transformations of allφ j

( j = 1,2,3). With this observation, we easily find

Vφ = −µ2
1φ†

1 φ1−µ2
2

(

φ†
2 φ2 +φ†

3 φ3

)

+λ1

(

φ†
1 φ1

)2
+λ2

[

(

φ†
2 φ2

)2
+
(

φ†
3 φ3

)2
]

+λ3

(

φ†
1 φ1

)(

φ†
2 φ2 +φ†

3 φ3

)

+λ4

(

φ†
2 φ2

)(

φ†
3 φ3

)

+λ5

[(

φ†
1 φ2

)(

φ†
2 φ1

)

+
(

φ†
1 φ3

)(

φ†
3 φ1

)]

+λ6

(

φ†
2 φ3

)(

φ†
3 φ2

)

+λ7

[

(

φ†
2 φ3

)2
+
(

φ†
3 φ2

)2
]

+λ8

[

(

φ†
1 φ2

)2
+
(

φ†
1 φ3

)2
]

+λ ∗
8

[

(

φ†
2 φ1

)2
+
(

φ†
3 φ1

)2
]

. (5.14)

All coupling constants are real exceptλ8. We make the ansatz [34]

v2 = ueiα cosσ , v3 = ueiβ sinσ with v1 > 0, u > 0. (5.15)

DefiningFφ = 〈Vφ 〉0 and using Eq. (5.15), we obtain

Fφ = −µ2
1v2

1−µ2
2u2 +λ1v4

1 +λ2u4 +(λ3 +λ5)v2
1u2

+
[

λ̃ −4λ7sin2(α −β )
]

u4cos2 σ sin2 σ

+2|λ8|v2
1u2[cos2 σ cos(ε +2α)+sin2 σ cos(ε +2β )

]

. (5.16)

In Fφ we have defined̃λ = −2λ2 +λ4 +λ6 +2λ7 andε = argλ8. The following is easy to check:

If λ̃ < 0 andλ7 < 0⇒ the minimum ofFφ is atσ = π/4, α = β = (π − ε)/2.
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Consequently, the minimum ofVφ has

v2 = v3 =
1√
2

uei (π−ε)/2 (5.17)

andmµ = 0. If we include softK-breaking by adding

〈Vsoft〉0 = µ2
softu

2cos2σ (5.18)

to Fφ , we obtain

cos2σ =
2µ2

soft

λ̃u2
and

mµ

mτ
=

|cos2σ |
1+

√
1−cos22σ

. (5.19)

If we chooseµ2
soft ≪ u2, we enforcemµ/mτ ≪ 1, which is technically natural because in the limit

µ2
soft → 0 the symmetryK is conserved and forµ2

soft 6= 0 it is broken only softly.

6. A general framework: The seesaw mechanism with soft lepton-number breaking

The model we have introduced in the previous section has three Higgs doublets, however,
all Yukawa coupling matrices are diagonal. Thus the family lepton numbersLα (α = e,µ,τ) are
conserved in all terms with dimension four in the Lagrangian, but they are softly broken by the
νR mass term—see Eq. (5.2). One could, therefore, envisage the general framework of a multi-
Higgs-doublet SM, withnH Higgs doublets, the seesaw mechanism and softLα breaking. It has
the following features [35]:

∗ It is a renormalizable theory. In particular, lepton-flavour-changing amplitudes are finite.

∗ The family lepton numbersLα (and the total lepton number) are softly broken by the mass
term of the right-handed neutrino singlets at thehighseesaw scalemR.

∗ All Yukawa coupling matrices are diagonal and thus alsoMℓ andMD.

∗ The mass matrixMR—see Eq. (5.2)—is the only source of lepton mixing.

Apart from allowing for interesting models for neutrino masses and mixing by imposing further
symmetries, this framework is in itself interesting. It has flavour-changing neutral interactions in-
duced byMR, nevertheless, some flavour-changing processes do not decouple formR→∞, provided
nH > 1. It is the scalar sector which is responsible for this non-decoupling.

Decays of charged leptons which are unsuppressed by 1/mR are [35]µ− → e−e+e−, τ− →
µ−e+e−, τ− → µ−µ+µ− andτ− → e−e+e−. In Fig. 3 we have depicted the Feynman diagrams
for the vertexτ− → µ− (S0

b

)∗
, where

(

S0
b

)∗
is a virtual neutral scalar; this is the vertex responsible

for the amplitudeA (τ− → µ−ℓ+ℓ−) (ℓ = e,µ) which does not vanish in the limitmR → ∞. Also
the flavour-changing scalar decays of the typeS0

b → e+µ− are unsuppressed. On the other hand,
the decay amplitudes forτ− → µ−µ−e+ andτ− → e−e−µ+ stem from box diagrams and behave
like 1/m2

R for largemR. The amplitudes forµ → eγ andZ → e−µ+ have the same behaviour.
While the processes whose amplitudes are suppressed by 1/m2

R are completely invisible for
all practical purposes, the decay rate ofµ− → e−e+e−, although its amplitude is small because it
contains a product of four Yukawa couplings, could eventually be within experimental reach.
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Figure 3: The diagrams forτ− → µ− (S0
b

)∗
.
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