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1. Introduction

There has been a remarkable progress in the studies of neutrinos in the last several years. The
experiments with solar, atmospheric and reactor neutrinos [1, 2, 3, 4, 5] have provided compelling
evidences for existence of neutrino oscillations - transitions in flight between different flavour neu-
trinos, caused by nonzero neutrino masses and neutrino mixing.

The hypothesis of neutrino mixing and oscillations was formulated in [6, 7]. In[8] it was pre-
dicted that theνe oscillations will cause a “disappearance” of solar (νe) neutrinos on their way to
the Earth. The evidences of solarνe “disappearance”, obtained first in the Homestake experiment
and strengthened by the results of Kamiokande, SAGE and GALLEX/GNO experiments [1, 9],
were made compelling by the data of Super-Kamiokande (SK) and SNO experiments [2, 3]. The
hypothesis of solarνe oscillations, which (in one variety or another) were considered from∼1970
on as the most natural solution of the solar neutrino “puzzle” (see, e.g., refs. [10, 11, 12, 13, 14]),
has received a convincing confirmation from the measurement of the solarneutrino flux through
the neutral current reaction on deuterium by the SNO experiment [3], and by the first results of
the KamLAND experiment [5]. The combined analysis of the solar neutrino data obtained by
Homestake, SAGE, GALLEX/GNO, Super-Kamiokande and SNO experiments, and of the Kam-
LAND reactorν̄e data [5], established the large mixing angle (LMA) MSW oscillations/transitions
[11, 12] as the dominant mechanism at the origin of the observed solarνe deficit (see, e.g., [15]).
The Kamiokande experiment [9] provided the first evidences for oscillations of atmosphericνµ

and ν̄µ , while the data of the Super-Kamiokande experiment made the case of atmospheric neu-
trino oscillations convincing [4, 16, 17]. Evidences for oscillations of neutrinos were obtained also
in the long baseline accelerator neutrino experiments K2K [18] and MINOS [19]. Indications for
ν-oscillations were reported by the LSND collaboration [20].

A beautiful confirmation of the oscillations of atmosphericνµ (ν̄µ ) and reactor̄νe neutrinos
was provided by the Super-Kamiokande data on theL/E-dependence of theµ-like atmospheric
neutrino events [16],L andE being the distance traveled by neutrinos and the neutrino energy,
and the spectrum data of the KamLAND and K2K experiments [21, 22]. For the first time the
data exhibit directly the effects of the oscillatory dependence onL/E andE of the probabilities
of ν-oscillations in vacuum [23]. As a result of these developments, the oscillations of solarνe,
atmosphericνµ andν̄µ , acceleratorνµ (atL ∼ 250 km andL ∼ 730 km) and reactor̄νe (atL ∼ 180
km), driven by nonzeroν-masses andν-mixing, can be considered as practically established.

The neutrino oscillation data imply the existence of 3-neutrino mixing in vacuum. Inthe
present lectures we review the theory of neutrino oscillations, the phenomenology of 3-ν mixing,
and the current data on the 3-ν mixing parameters. We discuss also the open questions and the
main goals of future research in the field of neutrino mixing and oscillations.

2. Neutrino Oscillations in Vacuum

We shall consider first the simplest possibility of two-neutrino oscillation in vacuum (see, e.g.
[10, 13, 24]). Let us assume that the state vector of the electron neutrino, |νe〉, produced in vacuum
with momentum~p in some weak interaction process, is a coherent superposition of the state vectors
|νi〉 of two neutrinosνi, i=1,2, having the same momentum~p and definite but different masses in
vacuum, mi , m1 6= m2, while the linear combination of|ν1〉 and|ν2〉, which is orthogonal to|νe〉,
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represents the state vector|νx〉 of another weak-eigenstate neutrino,|νx〉 = |νµ(τ)〉 or |νs〉, νs being
a sterile neutrino:

|νe〉 = |ν1〉cosθ + |ν2〉sinθ ,

|νµ〉 = −|ν1〉sinθ + |ν2〉cosθ ,
(2.1)

whereθ is the neutrino mixing angle in vacuum and we have chosen (for concreteness)νx ≡ νµ .
Obviously,|ν1,2〉 are eigenstates of the Hamiltonian of theν-system in vacuum,H0:

H0 |νi〉 = Ei |νi〉, Ei =
√

~p 2 +m2
i , i = 1,2. (2.2)

If νe is produced at timet = 0 in the state given by (2.1), after a timet the latter will evolve (in
vacuum) into the state

|νe(t)〉 = e−iE1t |ν1〉cosθ + e−iE2t |ν2〉sinθ = Aee(t) |νe〉+Aµe(t) |νµ〉 , (2.3)

where we have ignored the overall space coordinate dependent factor exp(i~p~r) in the right-hand
side of (2.3) and used (2.1). Here

Aee = e−iE1t cos2 θ + e−iE2t sin2 θ , Aµe =
1
2

sin2θ(e−iE2t − e−iE1t) (2.4)

are the probability amplitudes to find respectivelyνe andνµ at time t of the evolution of theν-
system if neutrinoνe has been produced at timet = 0. Thus, ifm1 6= m2 and if neutrino mixing
exists in vacuum,θ 6= nπ/2, n = 0,1,2, ..., we have|Aµe(t)|2 6= 0 and transitions in flight between
νe andνµ are possible. Assuming thatν1 andν2 are stable and relativistic, we obtain from (2.4) the
probabilities that aνe will not change intoνµ , P(νe → νe), or will transform intoνµ , P(νe → νµ):

P(νe → νe; t) = |Aee(t)|2 = 1− 1
2 sin22θ

(

1−cos2π L
Lv

)

,

P(νe → νµ ; t) = |Aµe(t)|2 = 1
2 sin22θ

(

1−cos2π L
Lv

)

,
(2.5)

where∆m2 = m2
2−m2

1, L ∼= t is the distance traveled by neutrinos and

Lv = 4π
E

∆m2
∼= 2.48 m

E[MeV ]

∆m2[eV 2]
(2.6)

is the oscillation length in vacuum. In obtaining (2.5) we have used the equalityE2−E1
∼= E +

∆m2/(2E), E ∼= |~p|, valid for relativistic neutrinosν1,2. The quantities∆m2 and sin22θ are typically
considered as free parameters to be determined by the analysis of the neutrino oscillation data. A
comprehensive theory of neutrino mixing should predict, or at least should be able to explain, the
values of these parameters found from the data.

Our derivation of the expressions for the oscillation probabilities (2.5) wasbased on the as-
sumption that the states|ν1〉 and|ν2〉 in the coherent superposition representing the state|νe〉 are
produced with the same momentum. It can be shown [25] that one arrives atthe same result, eq.
(2.5), if the states are produced with different momenta.

It should be clear from the above discussion that the neutrino oscillations are a purely quantum
mechanical phenomenon. The requirements of coherence between the states |ν1〉 and |ν2〉 in the
superposition (2.1) representing theνe (or νµ(τ)) at the production point, and that the coherence be
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Figure 1: The probability ofνe (ν̄e) survival,P(νe → νe; t) = P(ν̄e → ν̄e; t), as a function of the neutrino
energy forL = 180 km and∆m2 = 8.0×10−5 eV2 (from [27]).

maintained during the evolution of the neutrino system up to the moment of neutrinodetection, are
crucial for the neutrino oscillations to occur. The subtleties and the implicationsof the coherence
condition for neutrino oscillations continue to be discussed (see, e.g., [10,26, 28]).

It follows from CPT -invariance, which we will assume to hold, that

P(νe → νe; t) = P(ν̄e → ν̄e; t) , P(νe → νµ ; t) = P(ν̄µ → ν̄e; t) . (2.7)

Combined with the probability conservation,P(νe → νe; t) + P(νe → νµ ; t) = 1, P(ν̄e → ν̄e; t) +

P(ν̄e → ν̄µ ; t) = 1, eq. (2.7) implies that in the simple case of two-neutrino oscillations we are
considering one has

P(νe → νµ ; t) = P(ν̄e → ν̄µ ; t) = P(νµ → νe; t) = P(ν̄µ → ν̄e; t) . (2.8)

As it follows from (2.5),P(νe → νµ ; t) depends on two factors: on(1− cos2πL/Lv), which
exhibits oscillatory dependence on the distanceL and on theν energyE (hence the name “neutrino
oscillations”), and on sin22θ which determines the amplitude of the oscillations. In order to have
P(νe → νµ ; t) ∼= 1, two conditions have to be fulfilled: the neutrino mixing in vacuum must be
large, sin22θ ∼= 1, and the oscillation length in vacuumLv has to be of the order of or smaller
than the distance traveled by the neutrinos,Lv . 2πL. If Lv ≫ 2πL, the oscillations do not have
enough time to develop on the way to the neutrino detector and one hasP(νe → νµ ; t) ∼= 0. This
is illustrated in Fig. 1 showing the dependence of the probabilityP(νe → νe; t) = P(ν̄e → ν̄e; t) on
the neutrino energy.

A given experiment searching for neutrino oscillations, is specified, in particular, by the aver-
age energy of the neutrinos being studied,Ē, and by the distance traveled by the neutrinos to the
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Source Type ofν Ē[MeV] L[km] min(∆m2)[eV2]

Reactor ν̄e ∼ 1 1 ∼ 10−3

Reactor ν̄e ∼1 100 ∼ 10−5

Accelerator νµ , ν̄µ ∼ 103 1 ∼ 1
Accelerator νµ , ν̄µ ∼ 103 1000 ∼ 10−3

Atmosphericν ’s νµ,e, ν̄µ,e ∼ 103 104 ∼ 10−4

Sun νe ∼ 1 1.5×108 ∼ 10−11

detectorL. The requirementLv . 2πL determines the minimal value of∆m2 to which the exper-
iment is sensitive (figure of merit of the experiment): min(∆m2) ∼ 2Ē/L. Because of the inter-
ference nature of neutrino oscillations, theν- oscillation experiments can probe, in general, rather
small values of∆m2 (see, e.g., [10, 13]). Values of min(∆m2), characterizing qualitatively the sen-
sitivity of different experiments are given in Table 1. They correspondto the reactor experiments
CHOOZ (L ∼ 1 km) and KamLAND (L ∼ 100 km), to accelerator experiments - past (L ∼ 1 km),
recent, current and future (K2K, MINOS, OPERA, T2K, NOνA)), to Super-Kamiokande experi-
ment studying atmospheric and solar neutrino oscillations, and to the solar neutrino experiments.
Due to the large Sun - Earth distance the relatively low energies of the solarνe, the experiments
with solar neutrinos have a remarkable sensitivity to∆m2.

In certain cases the dimensions of the neutrino source,∆R, are not negligible in compari-
son with the oscillation length. Similarly, when analyzing neutrino oscillation data one has to
include the energy resolution of the detector,∆E, etc. in the analysis. As can be shown [13], if
2π∆R/(Lv) ≫ 1, and/orL∆m2∆E/(E2) ≫ 1, the oscillating term in the neutrino oscillation prob-
ability will be strongly suppressed. In this case the effects ofν-oscillations will be effectively
determined by the average probabilities:

P̄(νe → νe) ∼= 1− 1
2

sin22θ , P̄(νe → νµ) ∼= 1
2

sin22θ . (2.9)

As we have seen, if (2.1) is realized and∆m2L/(2E) & 1 for reactorν̄e, for instance, they can take
part in vacuum oscillations on the way to the detector (see eqs. (2.8) and (2.7)). In this case the
flavour content of thēνe state vector will change periodically on the way to the detector due to
the different time evolution of the vector’s massive neutrino components. The amplitude of these
oscillations is determined by the value of sin22θ . If sin22θ is sufficiently large, the neutrinos that
are being detected at distanceL will be in states representing, in general, certain superpositions of
the states of1 ν̄e andν̄µ . The reactor̄νe have energiesE ∼< 12 MeV and are detected through the
charged current (CC) reaction̄νe + p → e+ + n. Obviously, theν̄µ component of the state being
detected will not give a contribution to the signal in the detector. As a result, the measured signal
in the reactor̄νe oscillation experiment should be noticeably smaller than the predicted one in the
absence of oscillations. This is what is observed in the KamLAND experiment[5, 21], which has

1Obviously, ifνe mixes withνµ and/orντ , these states will be superpositions of the states ofν̄µ and/orν̄τ .
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a baseline roughly of2 L ∼ 180 km. Knowing the initialν̄e flux and comparing it with the flux
measured at the detector, one can get information about the neutrino oscillation parameters. From
the data accumulated in the KamLAND experiment, the following values of the two parameters
were obtained [21] (see also [29] and Section 4):

|∆m2
21| ∼ 8×10−5 eV2 , sin22θ12 ∼ 0.84. (2.10)

Similar considerations apply to the case of mixing and oscillations betweenνµ (ν̄µ ) andντ

(ν̄τ ), which is relevant for the interpretation of the Super-Kamiokande experimental results on
atmospheric neutrinos [4, 16, 17]. The data is described perfectly well interms of two-neutrino
νµ → ντ , ν̄µ → ν̄τ oscillations with parameters:

|∆m2
31| ∼= 2.2×10−3 eV2 , sin22θ23

∼= 1.0. (2.11)

Finally, in the CHOOZ reactor neutrino experiment with a baselineL∼= 1 km, no disappearance
of reactorν̄e was observed. For the energies of the reactorν̄e, the oscillations due to|∆m2

21| ∼=
8× 10−5 eV2 cannot develop on the distance of 1 km: we have for, e.gE = 4 MeV, 2πL/Lv

∼=
0.063≪ 1, cos2πL/Lv

∼= 1, and correspondinglyP(ν̄e → ν̄e)∼= 1. In the range of values of|∆m2
31|,

determined from the atmospheric neutrino oscillation data,|∆m2
31| ∼ 2.5×10−3 eV2, the following

limit on the relevant mixing angle was obtained [31]:

sin2 θ13 < 0.06. (2.12)

We postpone to Section 4 a more detailed discussion of the ranges of values of neutrino oscil-
lation parameters determined by the current global neutrino oscillation data.

3. Matter Effects in Neutrino Oscillations

The presence of matter can drastically change the pattern of neutrino oscillations: neutrinos
can interact with the particles forming the matter. Accordingly, the Hamiltonian of the neutrino
system in matter differs from the Hamiltonian of the neutrino system in vacuumH0,

Hm = H0 +Hint , (3.1)

whereHint describes the interaction of neutrinos with the particles of matter. When, e.g.,νe prop-
agate in matter, they can scatter (due to theHint) on the electrons (e−), protons (p) and neutrons
(n) present in matter. The incoherent elastic and the quasi-elastic scattering,in which the states of
the initial particles change in the process (destroying the coherence between the neutrino states),
are not of interest - they have a negligible effect on the solar neutrino propagation in the Sun and
on the solar, atmospheric and reactor neutrino propagation in the Earth3 : even in the center of the
Sun, where the matter density is relatively high (∼ 150 g/cm3), a νe with energy of 1 MeV has
a mean free path with respect to the indicated scattering processes, which exceeds 1010 km. We

2The KamLAND detector, which is situated in the Kamioka mine in Japan, actuallyreceivesν̄e flux principally
from 16 reactors in Japan, located at different distances from the Kamioka mine. The baseline of 180 km we quote
represents a mean distance to the reactors contributing to the signal in the KamLAND detector (see [5, 21]).

3These processes are important, however, for the supernova neutrinos (see, e.g., [30]).
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recall that the solar radius is much smaller: R⊙ = 6.96×105 km. The oscillatingνe andνµ can
scatter also elastically in the forward direction on the e−, p andn, with the momenta and the spin
states of the particles remaining unchanged. In such a process the coherence of the neutrino states
is being preserved.

Theνe andνµ coherent elastic scattering on the particles of matter generates nontrivial indices
of refraction of theνe andνµ in matter [11]: κ(νe) 6= 1, κ(νµ) 6= 1. Most importantly, we have
κ(νe) 6= κ(νµ). The differenceκ(νe)−κ(νµ) is determined essentially by the difference of the real
parts of the forwardνe − e− andνµ − e− elastic scattering amplitudes [11]4 and can be calculated
in the Standard Theory. One finds [11, 33, 34]:

κ(νe)−κ(νµ) = − 1
p

√
2GFNe , (3.2)

whereGF is the Fermi constant andNe is thee− number density in matter. Knowingκ(νe)−κ(νµ),
it is possible to write the system of evolution equations which describes theνe ↔ νµ oscillations in
matter [11]:

i
d
dt

(

Ae(t, t0)
Aµ(t, t0)

)

=

(

−ε(t) ε ′

ε ′ ε(t)

)(

Ae(t, t0)
Aµ(t, t0)

)

(3.3)

whereAe(t, t0) (Aµ(t, t0)) is the amplitude of the probability to find neutrinoνe (νµ ) at timet of the
evolution of the neutrino system if at timet0 the neutrinoνe or νµ has been produced,t ≥ t0, and

ε(t) =
1
2

[
∆m2

2E
cos2θ −

√
2GFNe(t)], ε ′ =

∆m2

4E
sin2θ . (3.4)

The term
√

2GFNe(t) in the parameterε(t) accounts for the effects of matter on neutrino oscilla-
tions. The system of evolution equations describing the oscillations of antineutrinos ν̄e ↔ ν̄µ in
matter has exactly the same form except for the matter term inε(t) which changes sign.

Consider first the case ofνe ↔ νµ oscillations in matter with constant density:Ne(t) =

Ne = const. Due to the interaction termHint in Hm, the eigenstates of the Hamiltonian of the neu-
trino system in vacuum,|ν1〉 and|ν2〉, are not eigenstates ofHm. It proves convenient to find the
states|νm

1,2〉, which diagonalize the evolution matrix in the r.h.s. of the system (3.3) or equivalently,
the HamiltonianHm. We have:

|νe〉 = |νm
1 〉cosθm + |νm

2 〉sinθm ,

|νµ〉 = −|νm
1 〉sinθm + |νm

2 〉cosθm .
(3.5)

Hereθm is the neutrino mixing angle in matter [11],

sin2θm =
ε ′

√
ε2 + ε ′2 =

tan2θ
√

(1− Ne
Nres

e
)2 + tan22θ

, (3.6)

where the quantity

4We standardly assume that the weak interaction of the flavour neutrinosνe, νµ andντ and antineutrinos̄νe, ν̄µ
and ν̄τ is described by the standard (Glashow-Salam-Weinberg) theory of electroweak interaction (for an alternative
possibility see, e.g., [32]). Let us add that the imaginary parts of the forward scattering amplitudes (responsible, in
particular, for decoherence effects) are proportional to the corresponding total scattering cross-sections and in the case
of interest are negligible in comparison with the real parts.
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Nres
e =

∆m2cos2θ
2E

√
2GF

(3.7)

is called “resonance density” [33]. The matter-eigenstates|νm
1,2〉 (which are also called “adiabatic”)

have energiesEm
1,2 whose difference is given by

Em
2 −Em

1 = 2
√

ε2 + ε ′2 =
∆m2

2E

(

(1− Ne

Nres
e

)2cos22θ +sin22θ
) 1

2

. (3.8)

It should be clear from (3.5) and (3.8) that the probability ofνe → νµ transition in matter with
Ne = const. is given by [12]

Pm(νe → νµ ; t) = |Aµ(t)|2 =
1
2

sin22θm [1−cos2π
L

Lm
] , (3.9)

whereLm = (Em
2 −Em

1 )/(2π) is the oscillation length in matter. As (3.6) indicates, the dependence
of the amplitude ofνe ↔ νµ oscillations in matter, sin22θm, onNe has a resonance character [12].
Indeed, if∆m2cos22θ > 0, for any sin22θ 6= 0 there exists a value ofNe equal toNres

e , such that

sin22θm = 1, f or Ne = Nres
e , (3.10)

even if the mixing angle in vacuum is small, i.e., if sin22θ ≪ 1. This implies that the presence of
matter can lead to a strong enhancement of the oscillation probabilityPm(νe → νµ ; t) even when
the νe ↔ νµ oscillations in vacuum are strongly suppressed due to a small value of sin22θ . For
obvious reasons the condition

Ne = Nres
e =

∆m2cos2θ
2E

√
2GF

, (3.11)

is called “resonance condition”, while the energy at which (3.11) holds for given Ne, ∆m2 and
cos2θ , is referred to as “resonance energy”,Eres.

The oscillation length at resonance is given by [12]Lres
m = Lv/sin2θ , while the width inNe of

the resonance (i.e., the “distance” inNe between the points at which sin22θm = 1/2) reads∆Nres
e =

2Nres
e tan2θ . Thus, if the mixing angle in vacuum is small the resonance is narrow,∆Nres

e ≪ Nres
e ,

andLm at resonance is relatively large,Lres
m ≫ Lv. As it follows from (3.8), the energy difference

Em
2 −Em

1 has a minimum at the resonance:(Em
2 −Em

1 )res = min (Em
2 −Em

1 ) = (∆m2/(2E))sin2θ .

It is instructive to consider two limiting case. IfNe ≪ Nres
e , as it follows from (3.6) and

(3.8),θm
∼= θ , Lm

∼= Lv and the neutrinos oscillate practically as in vacuum. In the opposite limit,
Ne ≫ Nres

e , Nres
e tan22θ , θm

∼= π/2 ( cos2θm
∼= −1) and the presence of matter suppresses the

νe ↔ νµ oscillations. In this case we get from (3.5) and (3.6):|νe〉 ∼= |νm
2 〉, |νµ〉 = −|νm

1 〉, i.e.,
νe practically coincides with the heavier of the two matter-eigenstateνm

2 , while theνµ coincides
with the lighter oneνm

1 .

Since the neutral current weak interaction of neutrinos in the Standard Theory is flavour sym-
metric, the formulae and results we have obtained are valid for the case ofνe − ντ mixing and
νe ↔ ντ oscillations in matter as well. The case ofνµ − ντ mixing, however, is different. It is
possible to show that to a relatively good precision we have for theνµ andντ indexes of refraction

8



P
o
S
(
P
2
G
C
)
0
0
2

Neutrino Physics Petcov Serguey

κ(νµ) ∼= κ(ντ). As a consequence, theνµ ↔ ντ oscillations in matter (e.g., in the Earth) proceed
as in vacuum5.

The analogs of eqs. (3.6) - (3.9) for oscillations of antineutrinos,ν̄e ↔ ν̄µ , in matter can
formally be obtained by replacingNe with (−Ne) in the indicated equations. It should be clear that
depending on the sign of∆m2cos2θ , the presence of matter can lead to resonance enhancement
either of theνe ↔ νµ or of theν̄e ↔ ν̄µ oscillations, but not of the both types of oscillations. This
is a consequence of the fact that the matter in the Sun or in the Earth we are interested in, is not
charge-symmetric (it containse−, p andn, but does not contain their antiparticles) and therefore
the oscillations in matter are neither CP- nor CPT- invariant [35]6.

The formalism we have developed can be applied, e.g., to the study of the mattereffects in
the νe ↔ νµ(τ) (νµ(τ) ↔ νe) oscillations of neutrinos which traverse the Earth mantle (but do not
traverse the Earth core). Indeed, the Earth density distribution in the existing Earth models [38] is
assumed to be spherically symmetric and there are two major density structures -the core and the
mantle, and a certain number of substructures (shells or layers). The Earth radius is 6371 km; the
Earth core has a radius of 3486 km, so the Earth mantle depth is 2885 km. The mean electron num-
ber densities in the mantle and in the core read [38]:N̄man

e
∼= 2.2 NAcm−3, N̄c

e
∼= 5.4 NAcm−3, mN

andNA being the nucleon mass and Avogadro number7 The electron number densityNe changes
relatively little around the mean values ofN̄e

∼= 2.3 cm−3 NA andN̄c
e
∼= 5.4 NAcm−3, along the tra-

jectories of neutrinos which cross a substantial part of the Earth mantle, orthe mantle and the core,
and theNe = const. approximation was shown to be remarkably accurate in what concerns the cal-
culation ofν-oscillation probabilities [36, 39]. This is related to the fact that the changesof density
along the path of the neutrinos in the mantle (or in the core) take place over pathlengths which are
typically considerably smaller than the corresponding oscillation length in matter.If, for example,
∆m2 = 10−3 eV2, E = 1 GeV and sin22θ ∼= 0.5, we have:Nres

e
∼= 4.6 cm−3 NA, sin22θm

∼= 0.8 and
the oscillation length in matter,Lm

∼= 3×103 km, is of the order of the depth of the Earth mantle.

In the case of neutrinos crossing the Earth core, new resonance-like effects become apparent.
For sin2 θ < 0.05 and∆m2 > 0, we can haveP2ν

m (νe → νµ) = P2ν
m (νµ → νe) ≡ P2ν

m (∆m2,θ) ∼= 1
only due to the effect of maximal constructive interference between the amplitudes of the νe → νµ

transitions in the Earth mantle and in the Earth core [39, 40]. The effect differs from the MSW
one [39] and the enhancement happens in the case of interest at a valueof the energy between the
resonance energies corresponding to the density in the mantle and that of the core. Themantle-
core enhancement effect is caused by the existence (for a givenν-trajectory through the Earth
core) ofpoints of resonance-like total neutrino conversion, P2ν

m (∆m2,θ) = 1 in the corresponding
space ofν-oscillation parameters [40]. The points whereP2ν

m (∆m2,θ) = 1 are determined by the

5In what concerns the possibility of mixing and oscillations between theνe and a sterile neutrinoνs, νe ↔ νs, the
relevant formulae can be obtained from the formulae derived for the case ofνe ↔ νµ(τ) oscillations by [35] replacing
Ne with (Ne −1/2Nn), whereNn is the number density of neutrons in matter.

6The matter effects in theνe ↔ νµ (ν̄e ↔ ν̄µ ) oscillations will be invariant with respect to the operation of time
reversal if theNe distribution along the neutrino path is symmetric with respect to this operation. The latter condition is
fulfilled for the Ne distribution along a path of a neutrino crossing the Earth [36, 37].

7The change ofNe from the mantle to the core can be well approximated by a step function [38].
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conditions [40]:

tanφ ′±
√

−cos2θ ′′
m

cos(2θ ′′
m −4θ ′

m)
, tanφ ′′ = ± cos2θ ′

m
√

−cos2θ ′′
m cos(2θ ′′

m −4θ ′
m)

(3.12)

where the signs are correlated and cos2θ ′′
m cos(2θ ′′

m − 4θ ′
m) ≤ 0. In eq. (3.12) 2φ ′ = (Em,m

2 −
Em,m

1 )Lman and 2φ ′′ = (Em,c
2 −Em,c

1 )Lcore are the oscillation phases (phase differences) accumu-
lated by the (two) neutrino states after crossing respectively the first mantlelayer and the core,
Em,m

1,2 (Em,c
1,2 ) andLman (Lcore) being the energies of the two states and the neutrino path length in

the mantle layer (core), andθ ′
m andθ ′′

m are theν-mixing angles in the mantle and in the core. For
∆m2 < 0 the mantle-core enhancement can take place for the antineutrino transitions,ν̄µ → ν̄e

and ν̄e → ν̄µ . A rather complete set of values of∆m2/E > 0 and sin22θ for which both con-
ditions in eq. (3.12) hold andP2ν

m (∆m2,θ) = 1 was found in [40]. The location of these points
determines the regions whereP2ν

m (∆m2,θ) is large,P2ν
m (∆m2,θ) ∼> 0.5. For sin2 θ < 0.05, there

are two sets of values of∆m2 and sin2 θ for which eq. (3.12) is fulfilled andP2ν
m (∆m2,θ) = 1.

These two solutions of eq. (3.12) occur for, e.g., values of the Nadir angle θn = 0; 130;230, at 1)
sin22θ = 0.034; 0.039; 0.051, and at 2) sin22θ = 0.15; 0.17; 0.22 (see Table 2 in the last article
quoted in [40]). For∆m2 = 2.0 (3.0)×10−3 eV2, for instance,P2ν

m (∆m2,θ) = 1 occurs in the case
of the first solution8 at E ∼= (2.8−3.1) GeV (E ∼= (4.2−4.7) GeV).

The effects of the mantle-core enhancement ofP2ν
m (νe → νµ) = P2ν

m (νµ → νe) ≡ P2ν
m (∆m2,θ)

are relevant, in particular, for the searches of subdominantνe(µ) → νµ(e) oscillations of atmo-
spheric neutrinos (see, e.g., [39, 41, 42]). In the case of three neutrino mixing, for which we
have compelling experimental evidences (see Section 4), and energies ofthe atmospheric neu-
trinos crossing the Earth coreE ∼> 2 GeV, theνe(µ) → νµ(e) transition probabilities of interest,
P3ν

m (νe → νµ) = P3ν
m (νµ → νe), are simply related to the two-neutrino transition probabilities dis-

cussed above [43] (see also [41]):P3ν
m (νe → νµ) = P3ν

m (νµ → νe) ∼= sin2 θ23P2ν
m (∆m2

31,θ13), where
θ23 and∆m2

31 are the atmospheric neutrino mixing angle and neutrino mass squared difference,
responsible for the dominantνµ → ντ andν̄µ → ν̄τ oscillations of atmospheric neutrinos, andθ13

is the CHOOZ angle (see eqs. (2.11) and (2.12)).

4. Oscillations of Solar Neutrinos

Consider next the oscillations of solarνe while they propagate from the central part, where
they are produced [44], to the surface of the Sun. For details concerning the production, spectrum,
magnitude and particularities of the solar neutrino flux, the methods of detectionof solar neutrinos,
description of solar neutrino experiments and of the data they provided we refer the reader to
[44, 14, 24]. The electron number densityNe changes considerably along the neutrino path in the
Sun: it decreases monotonically from the value of∼ 100 cm−3 NA in the center of the Sun to 0
at the surface of the Sun. According to the contemporary solar models (see, e.g., [44, 45]),Ne

decreases approximately exponentially in the radial direction towards the surface of the Sun:

Ne(t) = Ne(t0)exp

{

− t − t0
r0

}

, (4.1)

8The first solution corresponds to cos2φ ′ ∼= −1, cos2φ ′′ ∼= −1 and sin2(2θ ′′
m −4θ ′

m) = 1. The enhancement effect
in this case was called “neutrino oscillation length resonance” (NOLR) in [39].
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where(t − t0) ∼= d is the distance traveled by the neutrino in the Sun,Ne(t0) is the electron number
density in the point ofνe production in the Sun,r0 is the scale-height of the change ofNe(t) and
one has [45]r0 ∼ 0.1R⊙.

The system of evolution equations (3.3) does not admit, in general, exact solutions. However,
there are few notable exceptions in which the evolution equations can be solved exactly (see, e.g.,
[46, 47]). Remarkably, these include the case of exponentially varyingNe [48, 49], eq. (4.1), rele-
vant for the description of the solar neutrino oscillations in the Sun. Perhaps even more remarkable
is the fact that [50] the system of evolution equations (3.3), withNe given by eq. (4.1), describing
the solar neutrino oscillations in the Sun, is equivalent to a second order differential equation -
the confluent hypergeometric equation [51], which coincides in form with the Schrödinger (energy
eigenvalue) equation obeyed by the radial part of the non-relativistic wave function of the hydrogen
atom [52]. On the basis of the corresponding exact solutions expressed in terms of confluent hyper-
geometric functions, using the asymptotic series expansions of the latter [51], a simple expression
for the solar neutrino survival probability,P⊙(νe → νe), containing only elementary functions, has
been derived [48, 53] (see also [54]). It was also demonstrated thatthe expression forP⊙(νe → νe)

thus found provides a very precise (and actually, the most precise) analytic description of the MSW
oscillations and transitions of the solar neutrinos in the Sun [55, 56, 57]. The expression of interest
for P⊙(νe → νe) has the form [48, 53]:

P⊙(νe → νe) = P̄⊙ +Posc
1 , (4.2)

whereP̄⊙ is the average probability of solarνe survival,

P̄⊙ =
1
2

+

(

1
2
−Pc

)

cos2θ 0
m cos2θ , (4.3)

andPosc
1 is an oscillating term

Posc
1 = −

√

Pc(1−Pc)cos2θ 0
m sin2θ cos(Φ21−Φ22) . (4.4)

In eqs. (4.3) and (4.4)

Pc =
exp
[

−2πr0
∆m2

2E sin2 θ
]

−exp
[

−2πr0
∆m2

2E

]

1−exp
[

−2πr0
∆m2

2E

] (4.5)

is [48] the “jump” or “level-crossing” probability for exponentially varyingelectron number density
Ne

9, andθ 0
m is the neutrino mixing angle in matter [11] in the point ofνe production in the Sun.

The phasesΦ21 andΦ22 in the oscillating term, eq. (4.4), have a simple physical interpretation
[53, 50]. In the exponential density approximation one finds [53]:

Φ21−Φ22 = −2argΓ(1− c)−argΓ(a−1)+argΓ(a− c)

−r0
∆m2

2E
ln[r0

√
2GFNe(x0)]+

∆m2

2E
(L− x0) (4.6)

9An expression for the “jump” probability corresponding to the case of density (Ne) varying linearly along the
neutrino path was derived a long time ago by Landau and Zener [58]. Ananalytic description of the average probability
of solar neutrino transitions based on the linear approximation for the change ofNe in the Sun and on the Landau-Zener
result was proposed in [59]. The drawbacks of this description, whichin certain cases (e.g., non-adiabatic transitions
with relatively large sin22θ ) is considerably less accurate [55] than the description based on the results obtained in the
exponential density approximation, were discussed in [46, 48, 55].
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wherea = 1+ ir0∆m2/(2E)sin2 θ , c = 1+ ir0∆m2/(2E), Γ(y) is the Gamma function andL = 1
A.U. The part of the phase(Φ21−Φ22) given by∆m2(L−R⊙)/(2E), is accumulated on the path
of neutrinos in vacuum from the solar surface to the surface of the Earth; the rest is generated in
the Sun. Numerical studies have shown that(Φ21−Φ22) does not depend on the value ofNe(x0),
i.e., on the point ofνe production in the Sun [57].

Few comments are in order. Both eqs. (4.5) and (4.6) are valid for any value of ∆m2 (or
∆m2/(2E)) and for anyθ , includingθ ≥ π/4 [53]. The solar neutrino transitions are called “adia-
batic” [12] if Pc

∼= 0; otherwise they are called “non-adiabatic”10. As was shown in [54], the oscil-
lating termP1 can be relevant in the solar neutrino transitions, i.e., can give a non-negligible contri-
bution inP⊙(νe → νe), only for ∆m2/(2E) ∼< 10−8 eV2/MeV: at∆m2/(2E) ∼> 5×10−8 eV2/MeV
we have effectivelyP⊙(νe → νe) ∼= P̄⊙. In the latter case one speaks about solar neutrino transi-
tions. At ∆m2/(2E) ∼< 10−8 eV2/MeV a very precise and easy to use expression for the phase
(Φ21−Φ22) was found in [57]:

Φ21−Φ22
∼= 0.130(

∆m2

2E
R⊙)+1.67×10−3(

∆m2

2E
R⊙)2cos2θ +

∆m2

2E
(L−R⊙). (4.7)

The effects of solar matter in theνe → νµ(τ) oscillations or transitions of solar neutrinos be-
come negligible at sufficiently large [12] and sufficiently small [48, 53, 54]∆m2. For solar neu-
trinos we have at∆m2 ∼> 6× 10−4 eV2: Pc

∼= 0, P1
∼= 0, cos2θ 0

m
∼= cos2θ , andP⊙(νe → νe) ∼=

1−1/2 sin22θ , which coincides with the average probability of survival ofνe when the oscilla-
tions take place in vacuum. At∆m2 ∼< 5×10−10 eV2 one finds [48, 53, 54]Pc

∼= cos2 θ , cos2θ 0
m
∼=

−1, (Φ21−Φ22) ∼= ∆m2(L− x0)/(2E), and correspondinglyP⊙(νe → νe) ∼= 1−1/2 sin22θ [1−
cos(∆m2(L− x0)/(2E))], i.e., the solar neutrinos oscillate as in vacuum. For
5× 10−10 eV2 ∼< ∆m2 ∼< 2× 10−8 eV2 the solar matter effects are still not negligible and solar
neutrinos take part is the so-called “quasi-vacuum oscillations (QVO)”. Finally, for sin2 θ ∼ 0.3
of interest for the description of the solar neutrino data (see further), we havePc

∼= 0, P1
∼= 0,

cos2θ 0
m
∼=−1 and correspondinglyP⊙(νe → νe)∼= sin2 θ , approximately for∆m2/(2E)∼ (10−6−

5×10−8) eV2/MeV. The analytic expression forP⊙(νe → νe) given by eqs. (4.2) - (4.6) and (4.7)
provides a very precise analytic description of the solarνe oscillations/transitions [55, 57].

Let us note that the solar neutrino energies relevant for the interpretationof the results of the
solar neutrino experiments lie in the intervalE ∼= (0.233−14.4) MeV. As we shall see, the neutrino
mass squared difference responsible for the solar neutrino oscillations isconstrained by the data to
be in the range∆m2

⊙ = ∆m2
21

∼= (7.0−9.0)×10−5 eV2. Under these conditions we haveP1
∼= 0

andPc
∼= 0. The SNO experiment is sensitive to solarνe neutrinos with energiesE ∼> 6.5 MeV.

Thus, forE ∼> 10 MeV, the solar neutrino survival probability relevant for the interpretation of the
data from SNO experiment is given byP⊙(νe → νe) ∼= sin2 θ . This allows, in particular, a direct
determination of the solar neutrino mixing parameter sin2 θ from the SNO data.

5. Determining the Neutrino Mixing Parameters

The formalism of neutrino oscillations in vacuum and in matter we have developed is used in
the analyses of the neutrino oscillation data provided by the solar, atmospheric and reactor neutrino
experiments as well as by the experiments with accelerator neutrinos.

10For a more rigorous definition of the adiabatic and non-adiabatic neutrino transitions see [60, 55, 57].
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The Super-Kamiokande atmospheric neutrino data and the K2K and MINOS data are well
described in terms of (dominant) 2-neutrinoνµ → ντ (ν̄µ → ν̄τ ) vacuum oscillations (see [16, 18,
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Figure 2: The L/E dependence of theµ-like atmospheric neutrino event rate observed in the Super-
Kamiokande experiment [16].

19]). The correspondingνµ → ντ oscillation probability is given by:

P(νµ → νµ) ∼= 1−sin22θA sin2 ∆m2
AL

4E ,

P(νµ → νµ) = 1−P(νµ → ντ) = P(ν̄µ → ν̄µ) = 1−P(ν̄µ → ν̄τ) .

(5.1)

The best fit values and the 99.73% C.L. allowed ranges of the atmospheric neutrino (νA-) oscillation
parameters read [61]:

|∆m2
A | = 2.5×10−3 eV2 , sin22θA = 1.0 ,

|∆m2
A | = (1.9−3.2)×10−3 eV2 , sin22θA ≥ 0.87 .

(5.2)

The sign of∆m2
A and of cos2θA , if sin22θA 6= 1.0, cannot be determined using the existing data.

The latter implies that when, e.g., sin22θA = 0.92, one has sin2 θA
∼= 0.64 or 0.36.

In ref. [16] SK collaboration presented the first evidence for an “oscillation dip” in the
L/E−dependence,L andE being the distance traveled by neutrinos and the neutrino energy, of
a particularly selected sample of (essentially milti-GeV)µ−like events11. Such a dip is predicted
due to the oscillatory dependence of theνµ → ντ (ν̄µ → ν̄τ ) oscillation probability on Ł/E: the
νµ → ντ (ν̄µ → ν̄τ ) transitions of atmospheric neutrinos are predominantly two-neutrino transitions
governed by vacuum oscillation probability. The dip in the observedL/E distribution corresponds

11These areµ−like events for which the relative uncertainty in the experimental determination of theL/E ratio does
not exceed 70%.
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to the first oscillation minimum of theνµ (ν̄µ ) survival probability,P(νµ → νµ) (P(ν̄µ → ν̄µ)),
asL/E increases starting from values for which|∆m2

A |L/(2E) ≪ 1 andP(νµ → νµ) ∼= 1. This
beautiful result represents the first ever observation of a direct effect of the oscillatory dependence
on L andE of the probability of neutrino oscillations in vacuum.

The combined neutrino oscillation analysis of the solar neutrino and the KamLAND data
shows [21, 29, 62] that theν⊙-oscillation parameters lie in the so-called “low-LMA” region. The
best fit values and the 99.73% C.L. allowed ranges of values of∆m2

⊙ and sin2 θ⊙ read:

∆m2
⊙ = 8.0×10−5 eV2 , sin2 θ⊙ = 0.30 ,

∆m2
⊙ = (7.1−8.9)×10−5 eV2 , sin2 θ⊙ = (0.24−0.40) .

(5.3)

The value of∆m2
⊙ is determined with a remarkably high precision. Maximalν⊙-mixing is ruled

out at∼ 6σ [29, 61]; at 95% C.L., cos2θ⊙ ≥ 0.28. One also has:∆m2
⊙ /|∆m2

A | ∼ 0.03≪ 1.

The interpretation of the solar and atmospheric neutrino, K2K, KamLAND andMINOS data
in terms ofν-oscillations requires the existence of 3-ν mixing in the weak charged lepton current:

νlL =
3

∑
j=1

Ul j ν jL , l = e,µ,τ, (5.4)

whereνlL are the flavour neutrino fields,ν jL is the left-handed field of neutrinoν j having a mass
m j andU is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)ν-mixing matrix [6, 7]. All existing
ν-oscillation data, except the data of LSND experiment12 [20], can be described assuming 3-ν
mixing in vacuum and we will consider only this possibility. The minimal 4-ν mixing scheme
which could incorporate the LSND indications forν-oscillations is strongly disfavored by the data
[64]. Theν-oscillation explanation of the LSND results is possible assuming 5-ν mixing [65].

The PMNS matrix can be parametrized by 3 angles and, depending on whether the massive
neutrinosν j are Dirac or Majorana particles, by 1 or 3 CP-violation (CPV ) phases [66, 67]. In the
standard parameterization [86]

UPMNS = V (θ12,θ13,θ23,δ ) diag(1,eiα ,eiβ ),

V =









c12c13 s12c13 s13

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13eiδ

s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13eiδ









, (5.5)

whereci j = cosθi j, si j = sinθi j, the anglesθi j = [0,π/2], δ = [0,2π] is the DiracCPV phase
andα ,β are two MajoranaCPV phases [66, 67]. One can identify∆m2

⊙ = ∆m2
21 > 0. In this case

|∆m2
A |=|∆m2

31| ∼= |∆m2
32|, θ12 = θ⊙, θ23 = θA . The angleθ13 is limited by the data from the CHOOZ

experiment [31]. The existingνA-data is essentially insensitive toθ13 obeying the CHOOZ limit
[17]. The probabilities of survival of reactor̄νe and solarνe, relevant for the interpretation of the

12In the LSND experiment indications for oscillations̄νµ → ν̄e with (∆m2)LSND ≃ 1 eV2 were obtained. The LSND
results are being tested in the MiniBooNE experiment [63].
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Figure 3: The 90%, 95%, 99% and 99.73% C.L. allowed regions in the∆m2
21 -sin2 θ12 plane, obtained in a

three-neutrino oscillation analysis of the solar neutrino, KamLAND and CHOOZ data [29].

KL, CHOOZ andν⊙- data, depend onθ13 (see, e.g., [69]):

P3ν
KL

∼= sin4 θ13+cos4 θ13

[

1−sin22θ12sin2 ∆m2
21L

4E

]

,

P3ν
CHOOZ

∼= 1−sin22θ13sin2 ∆m2
31L

4E ,

P3ν
⊙ ∼= sin4 θ13+cos4 θ13 P2ν

⊙ (∆m2
21,θ12;θ13) ,

(5.6)

whereP2ν
⊙ is the 2-ν mixing solarνe survival probability, eq. (4.2), in the case of transitions driven

by ∆m2
21 andθ12, in which (the solare− number density)Ne is replaced byNe cos2 θ13 [43], P2ν

⊙ =

P̄⊙ +Posc
1 (see eqs. (4.3) and (4.4)). In the LMA solution region one has [54]P2ν

⊙ osc
∼= 0. Using the

existing atmospheric and solar neutrino, CHOOZ and KamLAND data, one finds [29, 61]:

sin2 θ13 < 0.041, 99.73% C.L. (5.7)

In Fig. 3 we show the allowed regions in the∆m2
21 −sin2 θ12 plane for few fixed values of sin2 θ13.

Thus, the fundamental parameters characterizing the 3-neutrino mixing are: i) the 3 angles
θ12, θ23, θ13, ii) depending on the nature ofν j - 1 Dirac (δ ), or 1 Dirac + 2 Majorana (δ ,α,β ),
CPV phases, and iii) the 3 neutrino masses,m1, m2, m3. It is convenient to express the two larger
masses in terms of the third mass and the measured∆m2

⊙ = ∆m2
21 > 0 and∆m2

A . In the convention
we are using, the two possible signs of∆m2

A correspond to two types ofν-mass spectrum:
• with normal hierarchy,m1 < m2 < m3,

∆m2
A = ∆m2

31 > 0, m2(3) = (m2
1 +∆m2

21(31))
1
2 , and

• with inverted hierarchy,m3 < m1 < m2,
∆m2

A = ∆m2
32 < 0, m2=(m2

3−∆m2
32)

1
2 , etc.

The spectrum can also be
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• normal hierarchical (NH): m1 ≪ m2 ≪ m3,
m2

∼= (∆m2
⊙ )

1
2 ∼0.009 eV,m3

∼= |∆m2
A |

1
2 ∼0.05; or

• inverted hierarchical (IH): m3 ≪ m1 < m2,
with m1,2

∼= |∆m2
A |

1
2 ∼0.05 eV; or

• quasi-degenerate (QD): m1
∼= m2

∼= m3
∼= m0, m2

j ≫ |∆m2
A |. In this case one hasm0 ∼> 0.10 eV.

As is well-known, neutrino oscillations are not sensitive to the absolute scaleof neutrino
masses. Information on the absolute neutrino mass scale can be derived in3H β -decay experi-
ments [70, 71, 72] and from cosmological and astrophysical data. The most stringent upper bounds
on theν̄e mass were obtained in the Troitzk [71] and Mainz [72] experiments:

mν̄e < 2.3eV at 95% C.L. (5.8)

We havemν̄e
∼= m1,2,3 in the case of the QDν-mass spectrum. The KATRIN experiment [72] is

planned to reach a sensitivity ofmν̄e ∼ 0.20 eV, i.e. it will probe the region of the QD spectrum. The
CMB data of the WMAP experiment [73], combined with data from large scale structure surveys
(2dFGRS, SDSS), lead to the following upper limit on the sum of neutrino masses (see, e.g. [74]):

∑
j

m j ≡ Σ < (0.4–1.7) eV at 95% C.L. (5.9)

Data on weak lensing of galaxies, combined with data from the WMAP and PLANCK experiments,
may allowΣ to be determined with an uncertainty ofξ ∼ 0.04 eV [74, 75].

The type of neutrino mass spectrum, i.e. sgn(∆m2
A), can be determined by studying oscillations

of neutrinos and antineutrinos, say,νµ ↔ νe andν̄µ ↔ ν̄e, in which matter effects are sufficiently
large. This can be done in long base-lineν-oscillation experiments [76]. If sin22θ13 ∼> 0.05 and
sin2 θ23 ∼> 0.50, information on sgn(∆m2

A) might be obtained in atmospheric neutrino experiments
by investigating the effects of the subdominant transitionsνµ(e) → νe(µ) and ν̄µ(e) → ν̄e(µ) of at-
mospheric neutrinos which traverse the Earth [41, 42]. Forνµ(e) (or ν̄µ(e)) crossing the Earth core,
the correspondingνµ(e) (or ν̄µ(e)) transition probabilities can be maximal [40] due to the mantle-
core enhancement effect (neutrino oscillation length resonance) [39], discussed in Section 3. For
∆m2

A > 0, the neutrino transitionsνµ(e) → νe(µ) are enhanced, while for∆m2
A < 0, the enhancement

of antineutrino transitions̄νµ(e) → ν̄e(µ) takes place, which might allow to determine sgn(∆m2
A).

If sin2 θ13 is sufficiently large, information about sgn(∆m2
A) can be obtained by studying the

oscillations of reactor̄νe on distances of∼ (30− 50) km [77]. An experiment with reactor̄νe,
which might have the capability to determine sgn(∆m2

A), was proposed recently in [78].

6. Outlook

After the spectacular experimental progress made in the studies of neutrinooscillations, fur-
ther understanding of the structure of neutrino masses and neutrino mixing,of their origins and of
the status of CP-symmetry in the lepton sector requires an extensive and challenging program of
research in neutrino physics. The main goals of this research program should include [69]:
• High precision measurement of the solar and atmospheric neutrino oscillationsparameters,∆m2

21,
θ21, and∆m2

31, θ23.
• Measurement of, or improving by at least a factor of (5 - 10) the existing upper limit on,θ13 -
the only small mixing angle inUPMNS. Together with the Dirac CP-violating phase, the angleθ13
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determines the magnitude of CP-violation effects in neutrino oscillations.
• Determination of the sign of∆m2

A (∆m2
31) and of the type ofν-mass spectrum (NH, IH,QD, etc.).

• Determining or obtaining significant constraints on the absolute scale ofν-masses, or onmin(m j).
• Determining the nature of massive neutrinosν j which can be Dirac fermions possessing distinct
antiparticles, or Majorana fermions, i.e. spin 1/2 particles that are identical with their antiparticles.
This is of fundamental importance for making progress in our understanding of the origin of neu-
trino masses and mixing and of the symmetries governing the lepton sector of particle interactions.
The presence of massive Dirac neutrinos is associated with the existence of a conserved additive
lepton charge, which can be, e.g. the total lepton chargeL = Le + Lµ + Lτ . If no lepton charge
is conserved by the particle interactions, the massive neutrinosν j will be Majorana fermions (see,
e.g., [13, 69, 79]).
• Establishing whether the CP-symmetry is violated in the lepton sector a) due to the Dirac phase
δ , and/or b) due to the Majorana phasesα andβ if ν j are Majorana particles.
• Searching with increased sensitivity for possible manifestations, other thanflavour neutrino oscil-
lations, of the non-conservation of the individual lepton chargesLl, l = e,µ,τ, such asµ → e+ γ,
τ → µ + γ, etc. decays.
• Understanding at fundamental level the mechanism giving rise to neutrino masses and mixing
and toLl−non-conservation, i.e., finding theTheory of neutrino mixing. This includes understand-
ing the origin of the patterns ofν-mixing andν-masses suggested by the data. Are the observed
patterns ofν-mixing and of∆m2

21,31 related to the existence of new fundamental symmetry of par-
ticle interactions? Is there any relations between quark mixing and neutrino mixing, e.g., does the
relationθ12+ θc=π/4, whereθc is the Cabibbo angle, hold? Isθ23 = π/4, or θ23 > π/4 or else
θ23 < π/4? What is the physical origin ofCPV phases inUPMNS? Is there any relation (correla-
tion) between the (values of)CPV phases and mixing angles inUPMNS? Progress in the theory of
ν-mixing might also lead, in particular, to a better understanding of the mechanismof generation
of baryon asymmetry of the Universe [80].

Obviously, the successful realization of the experimental part of this research program would
be a formidable task and would require many years. A number of experiments, which are expected
to make important contributions to the future studies of neutrino mixing – T2K, Double CHOOZ,
Daya Bay, CUORE, GERDA, etc., see [76, 81, 82, 83], are already under preparation.

The mixing angles,θ21, θ23 andθ13, DiracCPV phaseδ and∆m2
21 and∆m2

31 can, in principle,
be measured with a sufficiently high precision in a variety ofν-oscillation experiments (see, e.g.
[69]). The Dirac CP-violating phaseδ is a source of CP-violation inν-oscillations (see, e.g. [36,
84]). The magnitude of the CP-violation effects inν-oscillations is controlled by sinθ13sinδ .

The neutrino oscillation experiments, however, cannot provide informationon the absolute
scale ofν- masses and on the nature of massive neutrinosν j. The flavour neutrino oscillations
are insensitive to the Majorana CP-violating phasesα andβ [66, 35]. Establishing whetherν j

have distinct antiparticles (Dirac fermions) or not (Majorana fermions) is of fundamental impor-
tance for understanding the underlying symmetries of particle interactions [13] and the origin of
ν-masses. The only feasible experiments having the potential of establishing the Majorana na-
ture of massive neutrinos at present are the(ββ )0ν -decay experiments searching for the process
(A,Z) → (A,Z + 2) + e− + e− (for reviews see, e.g. [13, 83, 85]). The observation of(ββ )0ν -
decay and the measurement of the corresponding half-life with sufficientaccuracy, would not only
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be a proof that the total lepton charge is not conserved, but might provide also a unique informa-
tion on the i) type of neutrino mass spectrum [87] (see also [88]), ii) absolute scale of neutrino
masses (see, e.g. [88]), and iii) MajoranaCP-violating (CPV) phases [89, 86]. Ifν j are Majo-
rana fermions, getting experimental information about the Majorana CP-violating phases inUPMNS

would be a remarkably challenging problem [90, 91, 92]. The phasesα andβ can affect signifi-
cantly the predictions for the rates of the (LFV) decaysµ → e+γ, τ → µ +γ, etc. in a large class of
supersymmetric theories with see-saw mechanism of neutrino mass generation[93]. The Majorana
CPV phase(s) in the PMNS matrix can play the role of the CP-violating parameter(s) necessary for
the generation of baryon asymmetry of the Universe (see [94] and the references quoted therein).

The compelling experimental evidences obtained during the last several years for existence
of neutrino oscillations, caused by nonzero neutrino masses and neutrinomixing, opened a new
exciting field of research in elementary particle physics and astrophysics.There is no doubt that
progress in the studies of neutrino mixing and oscillations will lead to more profound understanding
of the fundamental forces governing particle interactions and of the Universe we are living in.
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