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Diffraction 2006: Theoretical Summary 

Jeffrey R. Forshaw 
School of Physics & Astronomy 
University of Manchester, Manchester M13 9PL, UK. 
E-mail: forshaw@mail.cern.ch 

This paper presents a summary of the theoretical presentations to the international workshop 
“Diffraction 2006”.  The range of topics covered during the workshop was quite broad and this 
summary is therefore somewhat selective covering recent developments in BFKL physics, 
exclusive processes, saturation dynamics, DIS and structure functions and coherence in QCD.  
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Summary: Theory J R Forshaw 

 

1. Developments in BFKL physics 

BFKL physics is concerned with understanding QCD in the Regge limit of high centre-
of-mass energy within the framework of perturbation theory1. It is the case that Regge-
like behaviour does emerge out of QCD, giving the hope that we can understand objects 
like the pomeron using non-abelian quantum gauge field theory. The original leading 
order (LO) BFKL calculations of the 1970’s led to the construction of an integral 
equation which describes gluon-gluon scattering in the Regge limit [1,2]. These 
calculations were followed many years later by the calculation of the NLO corrections 
to the integral equation [3,4]. More recently, effort has been directed at the problem of 
taking the solution to the integral equation and convoluting it with appropriate “impact 
factors” (also computed at NLO accuracy) in order to produce the first complete NLO 
BFKL calculations at the cross-section level. At the same time, the mathematical 
structure of high energy QCD has been the subject of closer scrutiny. Properties such as 
integrability and maximal transcendality have encouraged theorists to look more closely 
at the theory with potentially exciting consequences; the latest news was presented in 
the talk by Lipatov.   

1.1 Integrability and maximal transcendality 

It is possible to write the BFKL equation as a Schrödinger equation [5,6]: 
12 1 2 1 2( , ) ( , )H Eψ ρ ρ ψ ρ ρ=

r r r r  
where 1ρ

r  and 2ρ
r  represent the transverse positions of the reggeized gluons and the 

Hamiltonian is 
2 2 * 2 *

12 1 2 12 1 2 12 2 1
1 2 2 1

1 1ln | | ln(| | ) ln(| | ) 4 (1)H p p p p p p
p p p p

ρ ρ∗ ∗= + + − ψ  

where 12 1 2ρ ρ ρ= − . The co-ordinates and momenta are defined such that 

1 1 1( , )x yρ ρ ρ=
r

1 1 1x yi, ρ ρ ρ= +  and 1 1/p i ρ= ∂ ∂  etc. 
 
Of particular interest are the energy eigenvalues since they locate the j-plane poles in 
scattering amplitudes arising as a result of vacuum exchange in the t-channel. In 
particular, the ground state energy determines the right-most singularity (i.e. the 
intercept of the BFKL pomeron). 
 
The dimensionality of the problem can be reduced as a result of the fact that the 

Hamiltonian can be written as a sum of two parts, i.e.
*

12 12
12 2

h hH +
=  where 

2
12 1 2 12 1 12 2

1 2

1 1ln | | ln( ) ln( ) 2 (1)h p p p p
p p

ρ ρ= + + − ψ

                                                

. 
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1 Although recent progress aims at pushing also into the strong coupling limit. 
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Summary: Theory J R Forshaw 

This holomorphic separability applies also to the case of any number of exchanged 
reggeized gluons interacting pairwise with nearest neighbours. In this case we recover 
the BKP equation: 

k l
kl

k l c

T TH H
N<

⋅
= −∑ . 

The BKP equation was originally derived as far back as 1980 as the “minimal way” to 
unitarize BFKL (in the leading  approximation) [7,8].  cN
 
Remarkably, the general solution to this Schrödinger equation is accessible. The key is 
to realise that the problem is identical to that of a Heisenberg XXX spin chain where the 
spins are the generators of the group SL(2,C) and that problem is known to be 
integrable (which, roughly speaking, means there are as many operators which commute 
with the Hamiltonian as there are degrees of freedom) [9,10]. At first sight, the problem 
then reduces to identifying the ground state wavefunction and an appropriate raising 
operator. However, the lack of a “highest weight” state meant that a more sophisticated 
approach was needed and progress was eventually made in [11] where, amongst other 
things, it was shown that the solution for three reggeons gives the odderon solution with 
intercept equal to unity. See also [12] and references therein. 
 
Conformal symmetry is crucial to the integrability of the BKP equation and that is lost 
in QCD beyond leading order (e.g. when the QCD coupling starts to run). However, it is 
not lost in N=4 supersymmetric QCD and now the Hamiltonian remains 
holomorphically separable beyond LO. Moreover, it also appears to be built only using 
harmonic sums (i.e. ψ  functions and their derivatives). This suggests a “principle of 
maximal transcendality”; a principle which is supported by the fact that the N=4 
DGLAP splitting functions at two-loops (which can be computed by traditional means) 
appear also to be maximally transcendental [13]. More specifically (in j-space) they can 
always be built using harmonic sums like 
 

... ...
1 1

1 1( )   ,  ( ) ( )  
j j

a abc bca a
m m

S j S j S m
m m= =

= =∑ ∑ . 

 
What are we to make of this principle? Well, Kotikov, Lipatov, Onischenko & 
Velizhanin recently invoked it in order to predict the three-loop splitting function in 
N=4 QCD [14] by extracting the maximally transcendental parts of the three-loop 
calculations by Moch, Vermaseren & Vogt in ordinary QCD [15]. Unfortunately it is 
not easy to check their result (the N=4 QCD direct calculation is even harder than in 
QCD) but it has been shown to be correct in the 1j =  and j = ∞  limits. Eden & 
Staudacher have also used the principle to make a prediction for the all-loops splitting 
function at large j . The significance of this underlying mathematical structure remains 
to be established but it does appear to be yet another hint pointing to an important 
connection between QCD and string theory. 
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1.2 NLO BFKL 

For several years now we have known the BFKL equation at NLO for forward 
scattering, i.e.  at  [3,4]. To compute the NLO corrections to non-forward 
scattering requires more work and Fadin reported on the latest progress towards that 
goal. He pointed out that the “two-gluon” contribution illustrated in Fig.1 was the 
stumbling block which has now been surmounted [17]. In addition, first (partial) results 
were presented on the representation of the kernel in transverse co-ordinate space. That 
should prove useful both for checking the conformal structure and also in understanding 
the dipole formalism at NLO.   

gg gg→ 0t =
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 the gluon scattering amplitude we must also compute the coupling 
xternal particles if we are eventually to compute observable cross-

o must be evaluated at NLO. Chachamis told us that the calculation 
pact factor, illustrated in Fig.2, is more-or-less completed and that 

ible to compute the  total cross-section at NLO 
xplicit numerical results for the impact factor and a comparison to 

amis also pointed out that the results will however remain sensitive 
pling is made to run (since it is still only one-loop running). 

* * hadronsγ γ →
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s
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eading
d neg
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bly la
Figure 2: The photon impact factor
al cross-section will not be the first completed BFKL 
 Papa told us, the NLO calculation of * *γ γ ρ→ ρ  (at ) 
ed [20,21]. The relevant impact factor is illustrated in Fig.3 

0t =

 twist-2 meson distribution amplitude.  Apparently, there is 
ative NLO corrections and there is quite some sensitivity to 
ion scale with a hint (using PMS) that the appropriate scale 
rger than the natural value corresponding to the photon 
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Apart from exclusive proces
through inclusive jet product
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2. Exclusive processes 

2.1 Electroproduction 
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ses, one can also try and learn more about NLO BFKL 
ion and that subject was the focus of Schwennsen’s talk. 
 the cross-section for single jet production in scattering 
ass energy. At LO this is fairly straightforward however at 
sion vertex at NLO and that includes the two terms shown 
eeds to “break open” the integral over the outgoing real 

 always performed when computing the BFKL kernel for 
plement a jet algorithm [22]. The jet vertex has been 
is to compare to experiment and also to the predictions 
al collinear factorization approach. 

 
ure 4: The real emission vertex at NLO 

era discussed the possibility to look at the azimuthal 
o widely seperated jets in dijet events (or between the 
rticular he emphasised that quantities such as cos( )mφ< >  
the role played by higher conformal spin. He presented 
 effects and showed that NLO effects are important in 
rrelation than LO, in agreement with the data [23]. 

n we received several presentations: one from Igor Ivanov 
 mesons and one from Goloskokov on vector meson 

ented results on diffractive electroproduction of vector 
Goncalves talked about diffractive electroproduction off 
n Section 4. 
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k of -factorization Igor Ivanov presented results on D-wave Tk
spin-3 ( 3(1690)ρ ) meson production in diffraction. These two 
ital partners but the 3ρ  is absent from the incoming photon 
 production is therefore essentially off-diagonal. He presented a 
processes should occur at non-negligible rates, as illustrated in 
over, the relative contributions arising from production using 
is very different for the two cases and each is very different from 
 In particular the ratio 

2

2
VL

LT
T

mR
Q

σ
σ

=  

l to 1 for the ρ  whilst it is 9/289 for the ''ρ  and 6 for the 3ρ . The 
 for 3ρ  implies that even at quite low  its production may be 
licity violating amplitude. Calculations also indicate that 

2Q

3ρ  
 dominated by production via large size dipoles (~2fm), in which 
here for an enhancement of saturation dynamics. All that remains 
rimenters to uncover a sample of spin-3 mesons produced in 
 Ivanov informed us that investigations are well underway. 

 of diffractive electroproduction, Goloskokov presented results for 
g production using transverse photons, within the formalism of 

istribution functions (GPDs). This approach has formerly been 
uction using longitudinally polarized photons where it is clear that 
turbation theory is justified and one can use such processes to 
Extending the formalism to include also transverse photons is 
lusion of Sudakov corrections and intrinsic transverse momentum 
unction [26]. It is argued that the inclusion of these effects makes a 
ion viable and the comparison to data is impressive; the 
th available HERA data including the wide range of spin-density 
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matrix element measurements. Goloskokov also pointed out that an asymmetry 
measurement made using a longitudinally polarized beam and target (e.g. as could be 
performed at HERMES and COMPASS) would be sensitive to the spin of the gluon in 
the proton. 
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Figure 6: NLO contributions to two-pion electroproduction.
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lso gain access to information on GPDs from the (diffractive and non-
 electroproduction of pion pairs in *Nγ ππ→ and a calculation of this 
s discussed by Dmitri Ivanov.  A full NLO calculation was perfomed and 

phs are illustrated in Fig.6 [27]. In Fig.7, the predictions are compared to data 
MES at ,  and  
off hydrogen (deuterium) targets. One can readily see that the NLO 
 are not large. One should however be aware that the data are really at rather 
 of  where the factorization between hard scattering, GPD and two-pion 
 amplitude might not be expected to hold so well. Moreover, the calculations 
 twist in the pion distribution amplitude and higher twist corrections should 
at low enough . 

0.16x< >= 2 23.2(3.3)GeVQ< >= 2| | 0.43(0.29)GeVt< >=

2Q

2Q
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Figure 7:  Comparison of predictions for two-pion production to HERMES data. LO (dashed black line), 
NLO (solid black line).  The dotted line is the calculation without account of 2-gluon exchange in the t-

channel. 

 
 
The issue of how QCD factorization works in exclusive processes was explored further 
in Segond’s talk where he specifically looked at the theoretical test-bed process 

* *
L Lγ γ ρ→ ρ

2

2
2

 (the choice of longitudinal mesons avoids any potential problems 
associated with large end-point contributions) [28]. He specifically discussed the 
factorization properties of the scattering amplitude in two limits: (1) the limit 

, in which the amplitude for production using transverse photons factorizes as 
in Fig.8 into a product of hard scattering, a generalized distribution amplitude and two 
meson distribution amplitudes and (2) the limit , in which the amplitude for 
production using longitudinal photons factorizes as in Fig.9 into a product of a hard 
scattering amplitude and a transition distribution amplitude. 

2W Q<<

2
1Q Q>>

 
 
 
 

F . 

 
 

igure 8: Factorization for transverse photons at W << Q
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2.2 Central production 
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 experimentally and theoretically, in another type of 
p X+ + p  at high energies where the protons scatter 

ly a small fraction of their longitudinal momentum 
 detectors some 420m downstream from the interaction 
tgoing protons’ four-momenta [31] has opened up the 
asurements of the mass of the central system X and 
ussed upon the case where X could be a single Higgs 

ination to purely exclusive events arises when the 
duced in conjunction with additional particles. Royon 
his class of non-exclusive events and that uncertainties 
luon in the pomeron extracted using HERA data would 
tral exclusive production (CEP) [32]. 

 a thorny one in the theoretical studies of CEP. Eikonal 
 predictions for the fraction of events which survive 
er accounting for soft re-scattering effects [33,34]. 
ased on fundamental theory. Nevertheless, they have 
ously describing HERA and Tevatron data, and the 
d soft underlying event [35,36,37]. Royon pointed out 
muthal angles of the outgoing protons are expected to 
survival and that measurements using the existing low 
ed to test theoretical models using Tevatron data. 

al status of CEP was presented by Forshaw [30] who 
xpected rates in a variety of new physics scenarios. 
iggs production there is particular interest in Higgs 
so-called intense coupling regime [38] or with explicit 
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CP violation in Higgs sector [39]. In both cases the production rates can be greatly 
enhanced and a measurement of the Higgs mass can be obtained in channels which 
could be very difficult to study using more conventional means. Forshaw also discussed 
the possibility to study stable gluino production (as might occur in “split 
supersymmetry”) and measure the gluino mass, should it be lighter than ~350 GeV [40]. 
 
Apart from the production of new physics at high mass, the central system could be 
light, e.g. ', ,c bX η η η= . Of course production of such low masses is not perturbative 
and Szczurek presented his results using a non-perturbative model inspired by the 
Durham calculation which is used for larger masses, in conjunction with the γγ  fusion 
process [41]. The model is unable to reproduce the WA102 data (at W = 30 GeV) for 'η  
production, falling far below the data.  Apart from the inherent uncertainties in the 
model, one should note that the calculation is performed using only gluon fusion and 
quark contributions may well be playing an important role at these energies. 
 

3. Dipoles, saturation and unitarization 

At high enough centre-of-mass energy it has long been anticipated that non-linear QCD 
dynamics will begin to play a role, in order to prevent the power-like growth of cross-
sections with increasing energy from violating unitarity. However, the discovery of this 
non-linear gluon dynamics in the data has been elusive, certainly in the perturbative 
domain. Shaw presented the results of a phenomenological investigation to ascertain the 
extent to which saturation dynamics appear to be needed by existing data. His 
calculations are performed within the dipole model approach [42]. The strategy is to use 
the precise HERA data on the  structure function to constrain the universal dipole 
cross-section and this is then used to make predictions for other observables, notably 

, DVCS, exclusive vector meson production and the diffractive DIS structure 
function . Shaw concluded that the dipole formalism works very well indeed, 
being able to accommodate all of the electro/photo-production data. It is certainly true 
that models for the dipole cross-section which contain saturation effects do very well in 
explaining the data. However, it is also true that all of the data, with the exception of  
data at low  (i.e. < 2 GeV ), can also be explained using a dipole model which does 
not include any saturation. It appears that the data are unfortunately at insufficiently low 
x to probe saturation dynamics in a clearly perturbative domain.  

2F

2
cF

(3)
2
DF

2F
2Q 2

 
Over the past few years there has been perhaps a resurgence of interest in non-linear 
evolution in QCD. Hatta presented us with a summary of some of the latest 
developments in the field [43]. The situation is illustrated in Fig.10 where one defines a 
saturation scale  below which non-linear effects play an important role.  ( )sQ Y
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According to the wisdom of the BK equation [44,45] (and the more sophisticated 
JIMWLK approach [44,46-51]), the amplitude T(r,Y) for scattering a dipole of size r off 
some target evolves in Y as a travelling wave; a phenomenon known as “geometric 
scaling” and illustrated in Fig.11. 
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nt of the travelling wave is fixed by the saturation scale, Q Y . 
is behaviour is that diffractive DIS (DDIS) should be dominated 

( )s

1/s QCDQ≈1/ < Λ . However, Hatta pointed out that important 
butions are missing from the BK/JIMWLK approach and that 
s the physics quite dramatically. The position of the travelling 
es a stochastic variable, as illustrated in Fig.12, and the observed 
obtained by averaging, i.e. 

( , ) ( , ) ( )s s sT r Y dQ P Y Q T rQ< >= ∫ . 
 

ns in the saturation scale mean that saturation physics can enter 
 with the consequence that DDIS becomes dominated by the 

 dipoles at sufficiently large Y [43]. 
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e most promising avenues on which to search for saturation dynamics 
lectroproduction off nuclei and Goncalves presented results of a 
y into the possible role of saturation dynamics in DDIS off nuclear 
be probed at a future eRHIC or THERA experiment [52]. 

e topic of collisions involving nuclear targets, Gay-Ducati presented 
i-lepton production in the forward and backward directions in proton-
ons [53,54]. She emphasised that di-leptons produced at forward 
 the direction of the incoming proton) constitute a good probe of 
ics whilst di-lepton production at backward rapidities should be 

-x nuclear effects. The idea is that di-leptons, being colour neutral offer 
f interesting physics than, e.g. hadron production. 

ented the results of a study into the role of non-linear effects arising in 
f a small probe with a nuclear target. Crudely stated, the idea is to 
lauber-Gribov approach to account more completely for the colour 
 [55]. 

structure functions 

d us of the need to properly account for soft gluon effects at large x 
 the results of a toy model which illustrated the possible impact of re-
ts. He noted a visible impact (10-20%) upon the up-quark distribution 

 [56]. It will be interesting to see how much this correction is 
ing the NNLO evolution equations. 

0.8x< <

interesting observation that one expects much more nuclear shadowing 
t DIS if the probe is a left-handed positively charged W boson since in 

sensitive to quark dipoles of a size equal to the inverse of the strange 
 In contrast, right-handed W bosons scatter using dipoles whose size is 
e inverse of the charm quark mass. One way to probe this strong L-R 
ough the quantity 

3 3( ) 3xF xF xFν ν∆ = − . 
IS off nuclei one should measure the quantity 
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The low-x behaviour of the spin structure functions was the subject of a talk by Greco. 
He presented results of a complete resummation of all leading logarithms (including 
double and single logarithms in x). At low  and low x it is argued that the structure 
function  does not much depend upon x and that it can be close to zero in the low x 
range now probed by COMPASS. He also suggested that the experimenters look at the 
data as a function of the invariant 

2Q

1g

2 p q⋅ since it is expected that  turns negative at 
sufficiently large values and that this point would be sensitive to the relative balance 
between the quark and gluon densities.  

1g

5. Coherence in QCD 

Colour coherence is generally believed to be an essential property of QCD. In essence 
the idea is that soft gluons emitted at large angles cannot resolve emissions at low 
angles, as illustrated in Fig.13. 
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for less inc
emitted gluo
presented re
[58]. In par
least two je
momentum 
demonstrate
emitted coll
these contri
into the inc
breakdown 
distribution
of these su
perturbation
suggested b

F
l

Acknowled

My sincere
speakers wh
igure 13: Soft gluon emission at wide angles does not resolve emission at 
ower angles. 
6

)
0
2
3

lusive observables the effects of soft gluons are known to cancel. However 
lusive quantities, where there is some restriction on the phase space of 
ns, large logarithms can arise and generally need to be resummed. Kyrieleis 
sults which indicate that coherence in QCD may not hold in some instances 
ticular he focussed upon the “gaps-between-jets” observable in which at 

ts are produced and there is a requirement that no further jets with transverse 
above a scale  be produced in between them. For this observable, he 
d the possibility to produce super-leading logarithms due to soft gluons 
inear with an incoming parton. Ordinarily coherence would guarantee that 
butions would cancel and it would be safe to absorb all collinear logarithms 
oming parton distribution functions. Non-cancellation is tantamount to a 
of the “plus prescription” in the evolution of the incoming parton 

 function for scales above the scale  which defines the gap.  The existence 
per-leading logarithms (which occur for the first time at a high order in 
 theory) and the consequent breakdown of coherence is so far only 
y [58] and more work remains to be done before one can be certain. 

0Q

0Q
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ose presentations I enjoyed so much. Thanks are due to everyone whose 
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slides and figures I have used in producing this talk and apologies are due to those 
whose contributions did not make it into this final version. 
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