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Non-forward BFKL at NLO Victor Fadin

1. Introduction

The BFKL approach [1] gives a common basis for theoretical description of high energy pro-
cesses with fixed (not growing with energy

√
s) momentum transfers. Talking about BFKL one

usually has in mind the case of forward scattering, i.e. t = 0 and vacuum quantum numbers in the
t-channel. However, the BFKL approach is not limited to this particular case and, what is more,
from the beginning it was developed for arbitrary t and for all possible t-channel colour states.

Now the BFKL approach is developed in the next-to-leading approximation (NLA). In partic-
ular, the kernel of the BFKL equation for the forward scattering was found in the next-to-leading
order (NLO) a long time ago [2]. But the forward kernel can carry only restrictive information
about the BFKL dynamics. Moreover, the non-forward case has an advantage of smaller sensitivity
to large-distance contributions, since the diffusion in the infrared region is limited by

√

|t|. How-
ever, calculation of the non-forward kernel at NLO was completed only recently [3]. The reason
was the complexity of the two-gluon contribution.

2. Structure of the BFKL kernel

For any colour group representation R in the t-channel the kernel is given by the sum of
“virtual" and “real" parts [4]

ˆK = ω̂1 + ω̂2 + ˆKr . (2.1)

The “virtual" part is universal (i.e. it does not depend on R) and is expressed through the NLO
gluon Regge trajectory ω(t) [5]. The “real" part is related to particle production in Reggeon-
Reggeon collisions and consists of one-gluon, two-gluon and quark-antiquark contributions:

ˆKr = ˆKG + ˆKQQ̄ + ˆKGG. (2.2)

The first part is also universal, apart from a colour coefficient, and is also known in the NLO since
long ago [6].

The new contributions which appear in the NLO are ˆKQQ̄ and ˆKGG . Each of them is written
as a sum of two terms with coefficients depending on a colour representation R in the t-channel.
For the QQ̄ case both these terms are known long ago as well [7]. Instead, till recently only the
piece related to the gluon channel was known for the GG case [6].

Thus, the two-gluon contribution for a long time was the only missing piece in the non-forward
BFKL kernel.

3. The two-gluon contribution

3.1 Decomposition of the kernel

The “non-subtracted" contribution to the kernel KGG is written as

∑
G1G2

∫

γG1G2
(

γ ′G1G2
)∗

dφG1G2 , (3.1)
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where γG1G2 and γ ′G1G2 are effective vertices for two-gluon production in collision of Reggeized
gluons with momenta q1, −q2 and q′1, −q′2 respectively;

q1−q′1 = q2−q′2 = q, q1−q2 = q′1−q′2 = k1 + k2,

q is the total momentum transfer, ki are momenta of produced gluons, dφG1G2 is their phase space
element; the sum goes over polarizations and colours of produced gluons.

For two-gluon states the integral over their invariant mass k2 is logarithmically divergent at
large k2, that requires subtraction of the region of large invariant mass. This region is taken into
account in the leading terms.

The two-gluon vertex [8] contains two colour structures:

γG1G2 = T G1T G2 γ12 +T G2 T G1γ21 .

Accordingly, for any representation R of the colour group the two-gluon contribution KGG con-
tains two terms: "direct", corresponding to the colour factor T G1 T G2T G2T G1 , and "interference",
corresponding to the colour factor T G1T G2 T G1T G2 , with different colour coefficients aR and bR and
the functions Fa and Fb,

Fa ∝ γ1γ ′1 + γ2γ ′2, Fb ∝ γ1γ ′2 + γ2γ ′1 . (3.2)

With account of the subtraction KGG is presented in the form

2g4N2
c

(2π)D−1 Ŝ

∫ 1

0
dx
∫

d2+2ε k1

(2π)D−1

(

aRFa(k1,k2)+bRFb(k1,k2)

x(1− x)

)

+

, (3.3)

where D = 4 + 2ε is the space-time dimension taken different from 4 to regularize infrared diver-
gencies, the operator Ŝ symmetrizes with respect to exchange of the Reggeon momenta, x is a
fraction of longitudinal momenta of a produced gluon,

(

f (x)
x(1− x)

)

+

≡ 1
x
[ f (x)− f (0)]+

1
(1− x)

[ f (x)− f (1)] . (3.4)

The group coefficients are expressed through the coefficients cR appearing in the leading order:
aR = c2

R and bR = cR
(

cR− 1
2

)

. For the colour group SU(Nc) with Nc = 3 the possible representations
R are

1,8a,8s,10,10,27. (3.5)

Corresponding coefficients are

c1 = 1 , c8a = c8s =
1
2

, c10 = c10 = 0 , c27 =− 1
4Nc

. (3.6)

In particular,

a0 = 1 , a8a = a8s =
1
4
, b1 = 1/2, b8a = b8s = 0. (3.7)

The last equality is especially important for the antisymmetric case, since the vanishing of b8a is
crucial for the gluon Reggeization. It means that only planar diagrams contribute to the colour octet
kernel K

(8)
GG . It simplifies extremely calculation of this kernel [6].
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Instead of calculation of the second term in (3.3) we have found more convenient to calculate
the “symmetric" contribution

K
(s)

GG (~q1,~q2;~q) =
2g4N2

c

(2π)D−1 Ŝ

∫ 1

0
dx
∫

d2+2ε k1

(2π)D−1

(

Fs(k1,k2)

x(1− x)

)

+

, (3.8)

where
Fs = Fa +Fb ∝ (γ1 + γ2)(γ ′1 + γ ′2). (3.9)

A marvellous feature of K
(s)

GG is the absence of infrared singularities. The disappearance of the
singularities is rather tricky: it takes place due to independence of infrared singular terms in Fs

from x. Because of this reason the singularities vanish after the substraction.

3.2 Explicit representation of the kernel

Relations between the colour coefficients aR and bR permits to write the two-gluon contribution
to the kernel for any representation R is the form

K
(R)

GG = 2cRK
(8)

GG +bRK
(s)

GG . (3.10)

Moreover, in pure gluodynamics an analogous relations is valid for total "real" parts of the kernel:

K
(R)

r = 2cRK
(8)

r +bRK
(s)

GG . (3.11)

Since K
(s)

GG is infrared safe, this relation greatly simplifies analysis of infrared singularities, espe-
cially because the "real" part K (8)

r for the gluon channel is rather simple

K
(8)

r (~q1,~q2;~q) =
g2Nc

2(2π)D−1

{(

~q2
1~q
′2
2 +~q ′21 ~q2

2
~k 2

−~q2
)

×
(

1
2

+
g2NcΓ(1− ε)(~k 2)ε

(4π)2+ε

(

−11
6ε

+
67
18
−ζ (2)+ ε

(

−202
27

+7ζ (3)+
11
6

ζ (2)

))

)

+
g2NcΓ(1− ε)

(4π)2+ε

[

~q2
(

11
6

ln

(

~q2
1~q

2
2

~q2~k 2

)

+
1
4

ln

(

~q2
1

~q2

)

ln

(

~q ′21

~q2

)

+
1
4

ln

(

~q2
2

~q2

)

ln

(

~q ′22

~q2

)

+
1
4

ln2
(

~q2
1

~q2
2

))

−~q2
1~q
′2
2 +~q2

2~q
′2
1

2~k 2
ln2
(

~q2
1

~q2
2

)

+
~q2

1~q
′2
2 −~q2

2~q
′2
1

~k 2
ln

(

~q2
1

~q2
2

)(

11
6
− 1

4
ln

(

~q2
1~q

2
2

~k 4

))

+
1
2
[~q2(~k 2−~q2

1 −~q2
2 )+2~q2

1~q
2
2 −~q2

1~q
′2
2 −~q2

2~q
′2
1 +

~q2
1~q
′2
2 −~q2

2~q
′2
1

~k 2
(~q2

1 −~q2
2 )]

×I(~q2
1 ,~q2

2 ,~k 2)
]}

+
g2Nc

2(2π)D−1

{

~qi←→~q ′i

}

, (3.12)

where

I(a,b,c) =

∫ 1

0

dx
a(1− x)+bx− cx(1− x)

ln

(

a(1− x)+bx
cx(1− x)

)

. (3.13)

Due to infrared safety of K
(s)

GG the singularities are the same for all colour states in the t-channels,
apart from colour factors. Actually the singularities are the same as for the forward case, since they
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are proportional to the LO kernel. For the Pomeron channel the total kernel ˆK = ω̂1 + ω̂2 + ˆKr

must be infrared safe. In this case the singularities of Kr are cancelled by the singularities of
the gluon trajectory. In [3] the infrared safety is explicitly demonstrated and forms free from the
singularities are found.

The "symmetric" contribution is rather complicated. The complexity is related to the non-
planar diagrams. It is known since the calculation of the non-forward kernel for the QED Pomeron
[9] where only box and cross-box diagrams are relevant. The kernel was found only in the form
of two-dimensional integral. In QCD the situation is greatly worse because of existence of cross-
pentagon and cross-hexagon diagrams in addition to QED-type cross-box diagrams. It requires the
use of additional Feynman parameters. At arbitrary D no integration over these parameters at all
can be done in elementary functions. It occurs, however, that in the limit ε → 0 the integration
over additional Feynman parameters can be performed, so that the result can be written as two-
dimensional integral, as well as in QED.

The result can be written as

K
(s)

GG (~q1,~q2;~q =
α2

s N2
c

4π3

{([

(~q 2−2~q 2
1 )

(

25
9
− π2

12

)

− 11
12

(

2~q 2
1 ln

(

~q 2
1

~k 2

)

−~q 2 ln

(

~q 2

~k 2

))

+
~q 2

4
ln

(

~q 2
1

~q 2

)

ln

(

~q ′ 21

~q 2

)

−~q ′ 2
1

2

(

(~k 2−~q 2
1 −~q 2

2 )2−4~q 2
1~q 2

2

2~k 2
I(~k 2,~q 2

2 ,~q 2
1 )

+
~k 2 +~q 2

2 −~q 2
1

2~k 2
ln

(

~k 2

~q 2
2

)

ln

(

~q 2
1

~q 2
2

)

)

− J(~q1,~q2;~q)

]

+

[

~qi↔−~q′i

])

+

(

~q1↔−~q′2

)}

,

(3.14)
with the two-dimensional integral J(~q1,~q2;~q):

J(~q1,~q2;~q) =

∫ 1

0
dx
∫ 1

0
dz

{

~q1~q
′
1

(

(2− x1x2) ln

(

Q2

~k 2

)

− 2
x1

ln

(

Q2

Q2
0

))

− 1
2Q2 x1x2(~q

2
1 −2~q1~p1)(~q

′2
1 −2~q ′1 ~p2)+

2
x1

[

(

x2~q1~q
′
1 (~p1(~q

′
1−~p2))−~q ′21 ~q1~p2

) 1
Q2

+
(

z(1− z)~q ′22 ~q1~q
′
1 +~q ′21 (z~q1~k +(1− z)~q1~q

′
1)
) 1

Q2
0

]

− 1
Q2

(

~q ′21 ~q1
(

~p1−2~q ′1
)

+4x1~q
2
1 (~q ′1~p2)+~q ′1~q1(~q

′
1~q1−~q ′1~p1−~q1~p2)+2(~q ′1~p1)(~q1~p2)−2(~q ′1~p2)(~q1~p1)

)

+~q ′21

[ −1

µ2
2 Q2

(

2
x2

x1
(~q1~p2)~q

′
1
~k + x2(~q

′
1~p2)(~q

2
2 −~k 2)+2(~q2~p2)~q1~q

)

+
2

µ2
0 Q2

0

1
x1

(~q1~p0)~q
′
1
~k−~q1(~q ′1 +~k)

x1

(

x2

~p2
2

ln

(

Q2

µ2
2

)

− 1

~p2
0

ln

(

Q2
0

µ2
0

))

+
1

~p2
2

(

1

~p2
2

ln

(

Q2

µ2
2

)

+
1

Q2

)(

2
x2

x1
(~q1~p2)(~q

′
1 +~k)~p2−2((x2~q

′
1 +~q2)~p2)~q1~p2

)

− 1

~p2
0

(

1

~p2
0

ln

(

Q2
0

µ2
0

)

+
1

Q2
0

)(

2
1
x1

(~q1~p0)(~q
′
1 +~k)~p0

)

+
(x2~q ′1 +~q2)~q1

~p2
2

ln

(

Q2

µ2
2

)

5
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+
~q2

1

d

(

(~q2~k)(~q
′
2
~k)

(

Q2

d
L − 1

~k 2

)

+(~q2~p2)(~q
′
2
~k)

(

1

µ2
2

− µ2
1

d
L

)

+(~q2~k)(~q
′
2~p1)

(

1

µ2
1

− µ2
2

d
L

)

+(~q2~p2)(~q
′
2~p1)

(

~k 2

d
L − 1

Q2

)

+
(~q2~q ′2)

2
L

)]}

. (3.15)

Here

~p1 = zx~q1 +(1− z)(x~k− (1− x)~q ′2), ~p2 = z((1− x)~k− x~q2)+(1− z)(1− x)~q ′1;

Q2 = x(1− x)(~q 2
1 z+~q ′21 (1− z))+ z(1− z)(~q 2

2 x+~q ′22 (1− x)−~q2x(1− x)),

µ2
i = Q2 +~p2

i , d = µ2
1 µ2

2 −~k 2Q2 , L = ln

(

µ2
1 µ2

2
~k 2Q2

)

,

~p0 = z~k +(1− z)~q ′1; Q2
0 = z(1− z)~q ′22 , µ2

0 = z~k 2 +(1− z)~q ′21 . (3.16)

3.3 Analysis of the two-dimensional integral

Presence of the two-dimensional integral J(~q1,~q2;~q) in the kernel makes difficult its use both
for analytical investigation and for numerical calculations.

Unfortunately, the integrand INT(x,z) of J(~q1,~q2;~q) is too complicated. Moreover, it’s be-
haviour near the board of the integration region is not smooth. Analytical analysis of the integrand
near the board can facilitate the numerical calculations. The most important are the corner regions
[10]:

x� 1, z� 1:

INT(x,z) ' 2
x

(

(~q1~q ′1)~q
′
1~q
′
2

~q ′ 21

− (~q1~q ′2)
2

)

ln

(

x~q ′ 21 + z~q ′ 22

z~q ′ 22

)

+
1

x~q ′ 21 + z~q ′ 22

×
[

~q ′ 21 (~q 2
2 −~k 2 +~q1~q

′
2)−~q 2

1 (~q ′1~q2)+(~q1~q
′
1)(2~q1~q

′
1 +~q ′1~q

′
2)+2(~q ′1~q2)(~q1~q)

]

.

x� 1, 1− z� 1:

INT(x,z) ' 2
x

[

~q1~q
′
1−~q ′ 21

(

(~q1~k)(~q ′1~k)
~k 4

− (~q1~q ′2)

2~k 2

)]

ln

(

x~q 2
1 +(1− z)~q ′ 22

(1− z)~q ′ 22

)

+
1

x~q 2
1 +(1− z)~q ′ 22

[

−2~q ′ 21 (~q1~q)− (~q1~q
′
1)(2~q

′ 2
1 +2~q 2

1 +~q1~q
′
2)

+
~q ′ 21
~k 2

(

2(~q1~k)
2 +2(~q1~k)(~q

2
1 +~q1~q2)+~q 2

1 (~q ′1~k)+
~q 2

1 (~q2~k)(x~q1~q ′2− (1− z)~q ′ 22 )

x~q 2
1 +(1− z)~q ′ 22

)

+
~q 2

1~q ′ 21
~k 2

(

(~q2~k)(~q ′2~k)
~k ′ 2

− (~q2~q ′2)
2

)]

. (3.17)

1− x� 1, z� 1:

INT(x,z) ' 1

(1− x)~q ′ 21 + z~q 2
2

[

(~q1~q
′
1)(~q2~q

′
1)+~q ′ 21 (~q 2

1 −2~q1~q
′
1)

6



P
o
S
(
D
I
F
F
2
0
0
6
)
0
2
5

Non-forward BFKL at NLO Victor Fadin

+~q 2
1

(

(~q2~k)(~q ′2~k)
~k4

− (~q2~q ′2)

2~k2

)]

+
(1− x)~q ′1~q2− z~q 2

2

((1− x)~q ′ 21 + z~q 2
2 )2

~q ′ 21

(

2~q1~q+~q 2
1
~q ′2~k
~k 2

)

. (3.18)

1− x� 1, 1− z� 1:

INT(x,z) '
[

−~q ′ 21 (~q1(~q ′1 +~q2))−2~q 2
1 (q ′1~q2)− (~q1~q ′1)(~q1~q2)

]

(1− x)~q 2
1 +(1− z)~q 2

2

. (3.19)

Contributions of the corner regions are calculated analytically. Unfortunately, to do it for the re-
gions where one of the variables is closed to the board whereas another is arbitrary, is practically
impossible, although the integrand in these regions is also found [10].

3.4 Alternative representation

Because of complexity of the integral (3.15) another representations of K
(s)

GG are desirable.
The representation in the form of the integral in the transverse momentum space [10] can be useful
both for analytical investigation and numerical integration:

K
(s)

GG (~q1,~q2;~q) =
α2

s N2
c

4π3 ([Js(~q1,~q2;~q)+ Js(−~q2,−~q1;−~q)]+ [~qn↔~q−~qn]) , (3.20)

where ~qn and ~q−~qn ≡−~q ′n (n = 1,2) are the t–channel Reggeized gluon momenta,

Js(~q1,~q2;~q) =
~k 2

2
+

~q2

2

(

13
18
−ζ (2)

)

− (~q2
1 −~q2

2 )(~q ′21 −~q ′22 )

2~k 2
−~q2

(

11
12

ln

(

~q2

~k 2

)

+
5
6

ln2

)

+2

(

~q1~q2−~q2
1

~k~q ′1
~k 2

)

ln

(

~q2
1

~k 2

)

−
~k 2

2
ln

(

~q2
1

~k 2

)

ln

(

~q2
2

~k 2

)

+
~q2

4
ln

(

~q2
1

~q2

)

ln

(

~q ′21

~q2

)

+
(

~q1~q+
~q2

1 (~k~q ′2)−~q ′21 (~k~q2)

~k 2

)

(

1
2

ln

(

~q2
2

~k 2

)

ln

(

~q2
1

~q2
2

)

+(~q2~k)I(~q
2
1 ,~q2

2 ,~k 2))

)

+
5
2
(~q1~q2)−~q2

2 (~q′1~q)I(~q2
1 ,~q2

2 ,~k 2)+

∫

d2k1

π

[(

−
~k 2

1
~k 2

2

2
+(~k1~k2)

2 +(Qi
1Ωi j

1 Q′ j2 )(Qi
1Ωi j

2 Q′ j2 )

−~Q′22 (Qi
1Ωi j

1 Ω jl
2 Ql

1)
)

× 1
~Q2

1
~Q ′22 −~k 2

1
~k 2

2

ln

(

~Q2
1
~Q ′22

~k 2
1
~k 2

2

)

− 1
2

+
5
6

~q2

~k 2
1 +~k 2

2

]

.

Here~k =~q1−~q2 =~q ′1−~q ′2, ~k2 =~k−~k1, ~Qn =~q1−~kn, ~Q ′n =~q ′1−~kn, Ωi j
n = δ i j−2ki

nki
n/~k

2
n .

4. BFKL in coordinate representation

In the following only the colour singlet channel is considered. There are at least two reasons
for consideration of the singlet BFKL kernel in the coordinate representation in the transverse
space. First, just in this representation the BFKL equation in the leading approximation exhibits the
famous property of conformal invariance [11], which is extremely important for finding solutions
of the equation. Second, it is the representation in which the color dipole approach to high energy
scattering [12], very popular now, is formulated. An advantage of this approach is a clear physical
picture of the high energy processes. Moreover, this approach is naturally applied not only at low

7



P
o
S
(
D
I
F
F
2
0
0
6
)
0
2
5

Non-forward BFKL at NLO Victor Fadin

parton densities, but in the saturation regime [13], where equations of evolution of parton densities
with energy become nonlinear. Examination of the BFKL kernel in the coordinate representation is
needed for understanding its conformal properties and relation between the BFKL and the colour
dipole approaches. A clear understanding of this relation is very important. It could help in further
development of the theoretical description of small-x processes. It was affirmed [12] with the
advent of the dipole approach that in the linear regime it gives the same results as the BFKL
approach for the colour singlet channel. The relation between the BFKL and colour dipole in the
leading order was analyzed recently in [14]. This analysis is extended in [15] at NLO. It is based
on direct transformation of the BFKL kernel from the momentum representation to the coordinate
representation. Since the NLO calculations are performed using the dimensional regularization,
the space-time dimension D = 4+2ε is used in the LO as well, with the result

〈~r1,~r2| ˆK |~r ′1,~r ′2〉= 〈~r1,~r2| ˆKd |~r ′1,~r ′2〉−
g2NcΓ2(1+ ε)

8π3+2ε

×
[

δ (~r1−~r ′1)

(~r1−~r ′2)
2(1+2ε)

+
δ (~r2−~r ′2)

(~r2−~r ′1)
2(1+2ε)

−2
δ (~r ′1−~r ′2)(~r1−~r ′1)(~r2−~r ′2)

(~r1−~r ′1)
2(1+ε)(~r2−~r ′2)

2(1+ε)

]

, (4.1)

where

〈~r1,~r2| ˆKd |~r ′1,~r ′2〉=
g2NcΓ2(1+ ε)

8π3+2ε

∫

d2+2ε ρ
(

(~r1−~ρ)

(~r1−~ρ)2(1+ε)
− (~r2−~ρ)

(~r2−~ρ)2(1+ε)

)2

×
(

δ (~r1−~r ′1)δ (~r ′2−~ρ)+δ (~r2−~r ′2)δ (~r ′1−~ρ)−δ (~r1−~r ′1)δ (~r2−~r ′2)
)

(4.2)

is just the dipole kernel in D− 2-dimensional space. It is seen from (4.1) that, strictly speaking,
the BFKL and dipole kernels are not equivalent. However, if we consider scattering of colourless
particles, there is a freedom in a choice of the kernel [11], [14] due to the "gauge invariance" of
impact factors of such particles (vanishing of the impact factors at zero transverse momenta of
Reggeons). The freedom permits to omit the terms in the square bracket.

So, the BFKL and dipole kernels are not related by the Fourier transform, i.e. they have
only a "limited equivalence". Corresponding Green’s functions are different, and only scattering
amplitudes of colourless particles are the same.

In the momentum representation the kernels are related as

〈~q1~q2| ˆK |~q ′1~q ′2〉= 〈~q1~q2| ˆKd |~q ′1~q ′2〉−δ (~q−~q ′)

[

δ (~q2)ω(~q ′2)+δ (~q1)ω(~q ′1)+
g2Nc

(2π)3+2ε
2~q1~q2

~q 2
1~q 2

2

]

.

(4.3)
This equation can be obtained by the direct transformation of (4.2) in the momentum representation.
Note, that it means

∫

dD−2q1dD−2q2〈~q1~q2| ˆKd |~q ′1~q ′2〉= 0, (4.4)

i.e. that the dipole kernel does not satisfy to the "bootstrap condition"
∫

dD−2q1dD−2q2〈~q1~q2|( ˆK + ω̂1 + ω̂2−2ω(t))|~q ′1~q ′2〉= 0, (4.5)

which is required for compatibility of the gluon Reggeizatiion (the basis of the BFKL approach)
with the s– channel unitarity.
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In the NLO with account of the freedom discussed above the renormalized BFKL kernel in the
coordinate representation can be written as

〈~r1~r2| ˆK |~r ′1~r ′2〉= ar

[

δ (~r1−~r ′1)δ (~r2−~r ′2)
∫

dD−2ρ f̄ (~r1,~r2;ρ)

+δ (~r1−~r ′1) f̄1(~r1,~r2;~r ′2)+δ (~r2−~r ′2) f̄2(~r1,~r2;~r ′1)+
Γ(1+ ε)

2π1+ε f̄ (~r1,~r2;~r ′1,~r
′

2)
]

. (4.6)

If we restrict ourselves to quark contribution at large Nc in the limit ε → 0, we have in the MS
scheme

f̄ (~r1,~r2;~ρ) =
(~r1−~ρ)(~r2−~ρ)

(~r2−~ρ)2(~r1−~ρ)2 ln

(

~r 4
µ

(~r1−~ρ)2(~r2−~ρ)2

)

− 1
(~r1−~ρ)2 ln

(

~r 2
µ

(~r1−~ρ)2

)

− 1
(~r2−~ρ)2 ln

(

~r 2
µ

(~r2−~ρ)2

)

, (4.7)

f̄1(~r1,~r2;~ρ) =−2
(~r1−~ρ)(~r2−~ρ)

(~r1−~ρ)2(~r2−~ρ)2 ln

(

~r 2
µ

(~r1−~ρ)2

)

+
1

(~r2−~ρ)2 ln

(

~r 2
µ

(~r2−~ρ)2

)

+
1

(~r1−~ρ)2 ln

(

~r 2
µ

(~r1−~ρ)2

)

+
1

(~r1−~ρ)2 ln

(

(~r2−~ρ)2

(~r1−~r2)2

)

+
(~r1−~ρ)(~r2−~ρ)

(~r1−~ρ)2(~r2−~ρ)2 ln

(

(~r1−~r2)
2

(~r1−~ρ)2

)

,

(4.8)
f̄2(~r1,~r2;~ρ) = f̃1(~r2,~r1;~ρ), (4.9)

f̄ (~r1,~r2;~r ′1,~r
′

2) =
1

(~r2−~r ′2)
2

[

(~r1−~r2)
2

(~r1−~r ′2)
2

(

1
(~r ′1−~r ′2)

2 −
1

(~r1−~r ′1)
2

)

+
1

(~r ′1−~r ′2)
2

(

(~r2−~r ′1)
2

(~r1−~r ′1)
2 −1

)]

+1↔ 2 , (4.10)

ar =
α2

s (µ)Ncn f

12π3 , ln~r 2
µ =−5

3
+2ψ(1)− ln

(

µ2

4

)

. (4.11)

It is seen that the conformal invariance is violated not only by the renormalization. We see also that
the result (4.6)-(4.10) does not agree with the result obtained recently in [16] by direct calculation
of quark contribution to the dipole kernel in the coordinate representation.

5. Summary

The BFKL kernel is known now for t 6= 0 and all possible t-channel colour states R. It is
expressed in terms of the gluon trajectory, the kernel in the octet channel and the "symmetric"
contribution, which is infrared safe. It makes simple the infrared structure of the kernel for any R

and evident the infrared safety of the singlet kernel. However "symmetric" contribution contains
the two-dimensional integral with a complicated integrand. Analysis of the integrand in the near-
board region is performed. Alternative representation of the "symmetric" contribution is found.
Work on search of suitable representations for the kernel and on investigation of its properties is
continuing. The coordinate representation for the BFKL kernel is particularly interesting, because it

9



P
o
S
(
D
I
F
F
2
0
0
6
)
0
2
5

Non-forward BFKL at NLO Victor Fadin

gives the possibility to understand its conformal properties and relation between the BFKL and the
colour dipole approaches. Unfortunately, transformation of the BFKL kernel from the momentum
to the coordinate representation shows that violation of the conformal invariance in the NLO is not
reduced to the renormalization. Then, the result of the transformation does not agree with the direct
calculation of the dipole kernel in the NLO in the coordinate representation.
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