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1. Introduction

The study of jet production in perturbative QCD is an important element of phenomenolog-
ical studies at present and future colliders. At high energies the understanding of multijet events
becomes mandatory. In collinear factorization the theoretical analysis of multijet production is
complicated since there is a large number of contributing diagrams. However, if we focus on the
Regge asymptotics (small–x region) of scattering amplitudes then it is possible to describe the pro-
duction of a large number of jets. The corresponding phase space is that where the center–of–mass
energy, s, can be considered asymptotically larger than any of the other scales. In this region the
dominating Feynman diagrams are those with gluons exchanged in the t–channel. To resum con-
tributions of the form (αs ln s)n to all orders, with αs being the coupling constant, it is possible to
use the Balitsky–Fadin–Kuraev–Lipatov (BFKL) framework [1].

The concept of a Reggeized gluon is fundamental in the construction of the BFKL approach.
Colour octet exchange in Regge asymptotics can be described by a t–channel gluon with its prop-
agator modified by a multiplicative factor depending on a power of s. This power corresponds
to the gluon Regge trajectory which is a function of the transverse momenta and is divergent in
the infrared. This divergence is removed when real emissions are included using gauge invariant
Reggeon–Reggeon–gluon couplings. This allows us to describe scattering amplitudes with a large
number of partons in the final state. The (αs ln s)n terms correspond to the leading–order (LO)
approximation and provide a simple picture of the underlying physics. This approximation has
limitations: in leading order both αs and the factor scaling the energy s in the resummed loga-
rithms, s0, are free parameters not determined by the theory. These free parameters can be fixed
if next–to–leading terms αs (αs ln s)n are included [2]. At this improved accuracy, diagrams con-
tributing to the running of the coupling have to be included, and also s0 is not longer undetermined.
The phenomenological importance of the NLO effects has been recently shown for azimuthal angle
decorrelations in Mueller–Navelet jets in Ref. [3].

The LO Reggeon–Reggeon–gluon vertex corresponds to one gluon emission which can pos-
sibly generate a single jet. At NLO the emission vertex also contains Reggeon–Reggeon–gluon–
gluon and Reggeon–Reggeon–quark–antiquark terms. In this contribution we are interested in the
description of the inclusive production of a single jet in the NLO BFKL formalism. The relevant
events will be those with only one jet produced in the central rapidity region of the detector. To find
the probability of production of these events it is needed to introduce a jet definition in the emission
vertex. This is simple at LO, but at NLO one should study the possibility of double emission in the
same region of rapidity, which could lead to the production of one or two jets.

In the present text we highlight the main elements presented in the analysis of Ref. [4]. In
that work we discuss in detail the correct treatment of the different scales present in the amplitudes
paying particular attention to the separation of multi–Regge and quasi–multi–Regge kinematics.
There we also discuss similarities and discrepancies with the earlier work of Ref. [5].

Our analysis is performed for two different cases: inclusive jet production in the scattering
of two photons with large and similar virtualities, and in hadron–hadron collisions. In the former
case the cross section has a factorized form in terms of photon impact factors and gluon Green’s
function. In the latter, with a momentum scale for the hadron lower than the typical kT entering the
production vertex, the gluon Green’s function needs a modified BFKL kernel which incorporates
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some kT –evolution from the nonperturbative, and model dependent, proton impact factor to the
perturbative jet production vertex.

For hadron–hadron scattering, our cross section formula contains an unintegrated gluon den-
sity which, in addition to the usual dependence on the longitudinal momentum fraction, typical
of collinear factorization, carries an explicit dependence on the transverse momentum kT . This
scheme is known as kT –factorization. In the small–x region, where this type of factorization has at-
tracted particular interest, the BFKL framework offers the possibility to formulate, in a systematic
way, the generalization of the kT –factorization to NLO. It is then possible to interpret our analysis
as a contribution to the more general question of how to formulate the unintegrated gluon density
and the kT –factorization scheme at NLO: our results can be considered as the small–x limit of a
more general formulation.

2. Inclusive jet production at LO

To initiate the discussion we first study the interaction between two photons with large virtual-
ities Q2

1,2 in the Regge limit s � |t| ∼ Q2
1 ∼ Q2

2. In this region the total cross section can be written
as a convolution of the photon impact factors with the gluon Green’s function, i.e.

σ(s) =
∫

d2ka

2πk2
a

∫
d2kb

2πk2
b

ΦA(ka)ΦB(kb)
∫ δ+i∞

δ−i∞

dω
2πi

(
s
s0

)ω
fω(ka,kb). (2.1)

A convenient choice for the energy scale is s0 = |ka| |kb| since this naturally introduces the rapidi-

ties yÃ and yB̃ of the emitted particles with momenta pÃ and pB̃ given that
(

s
s0

)ω
= eω(yÃ−yB̃).

The gluon Green’s function fω corresponds to the solution of the BFKL equation

ω fω(ka,kb) = δ 2(ka −kb)+

∫
d2k K (ka,k) fω(k,kb), (2.2)

with kernel

K (ka,k) = 2ω(k2
a)δ 2(ka −k)+Kr(ka,k), (2.3)

where ω(k2
a) is the gluon Regge trajectory and Kr is the real emission contribution to the kernel

which we discus in detail in the following.
It is possible to single out one gluon emission by extracting its emission probability from the

BFKL kernel. By selecting one emission to be exclusive we factorize the gluon Green’s function
into two components. Each of them connects one of the external particles to the jet vertex, and
depends on the total energies of the subsystems sAJ = (pA +qb)

2 and sBJ = (pB +qa)
2, respectively.

We have drawn a graph indicating this separation in Fig. 1. The symmetric situation suggests the
choices s(AJ)

0 = |ka| |kJ | and s(BJ)
0 = |kJ | |kb|, respectively, as the suitable energy scales for the

subsystems. These choices can be related to the relative rapidity between the jet and the external
particles. To set the ground for the NLO discussion of next section we introduce an additional
integration over the rapidity η of the central system in the form

dσ
d2kJdyJ

=

∫
d2qa

∫
d2qb

∫
dη

[∫
d2ka

2πk2
a

ΦA(ka)

∫ δ+i∞

δ−i∞

dω
2πi

eω(yA−η) fω(ka,qa)

]

×V (qa,qb,η ;kJ,yJ) ×
[∫

d2kb

2πk2
b

ΦB(kb)
∫ δ+i∞

δ−i∞

dω ′

2πi
eω ′(η−yB) fω ′(−qb,−kb)

]
(2.4)
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with the LO emission vertex being

V (qa,qb,η ;kJ ,yJ) = K
(Born)

r (qa,−qb) δ (2) (qa +qb −kJ) δ (η − yJ). (2.5)

ka ↓

kb ↑

qa ↑

qb ↓

pB →

pA →

ka ↓

kb ↑

qb ↑

qa ↓

kJ

Figure 1: Total cross section and inclusive one jet production in the BFKL approach.

If the colliding external particles provide no perturbative scale, as it is the case in hadron–
hadron collisions, then the jet is the only hard scale in the process and we have to deal with an
asymmetric situation. In such a configuration the scales s0 should be chosen as k2

J alone. At LO
accuracy s0 is arbitrary and we are indeed free to make this choice. At this stage it is possible to
introduce the concept of unintegrated gluon density in the hadron. This represents the probability
of resolving a gluon carrying a longitudinal momentum fraction x from the incoming hadron, and
with a certain transverse momentum kT . Its relation to the gluon Green’s function would be

g(x,k) =
∫

d2q
2πq2 ΦP(q)

∫ δ+i∞

δ−i∞

dω
2πi

x−ω fω(q,k). (2.6)

With this new interpretation we can then rewrite Eq. (2.4) as

dσ
d2kJdyJ

=

∫
d2qa

∫
dx1

∫
d2qb

∫
dx2 g(x1,qa)g(x2,qb)V (qa,x1,qb,x2;kJ ,yJ), (2.7)

with the LO jet vertex for the asymmetric situation being

V (qa,x1,qb,x2;kJ ,yJ) = K
(Born)

r (qa,−qb)

×δ (2) (qa +qb−kJ) δ


x1 −

√
k2

J

s
eyJ


δ


x2 −

√
k2

J

s
e−yJ


 . (2.8)

3. Inclusive jet production at NLO

A similar approach remains valid when jet production is considered at NLO. The crucial step
in this direction is to modify the LO jet vertex of Eq. (2.5) and Eq. (2.8) to include new configu-
rations present at NLO. We show how this is done in the following first subsection. In the second
subsection we implement this vertex in a scattering process.
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3.1 The NLO jet vertex

For those parts of the NLO kernel responsible for one gluon production we proceed in exactly
the same way as at LO. The treatment of those terms related to two particle production is more
complicated since for them it is necessary to introduce a jet algorithm. In general terms, if the
two emissions generated by the kernel are nearby in phase space they will be considered as one
single jet, otherwise one of them will be identified as the jet whereas the other will be absorbed as
an untagged inclusive contribution. Hadronization effects in the final state are neglected and we
simply define a cone of radius R0 in the rapidity–azimuthal angle space such that two particles form
a single jet if R12 ≡

√
(φ1 −φ2)2 +(y1 − y2)2 < R0. As long as only two emissions are involved

this is equivalent to the kT –clustering algorithm.
To introduce the jet definition in the 2→ 2 components of the kernel it is convenient to combine

the gluon and quark matrix elements together with the MRK contribution:

(
KQQ̄ +KGG

)
(qa,−qb) ≡

∫
dD−2k2

∫
dy2 |B(qa,qb,k1,k2)|2

=

∫
dD−2k2

∫
dy2

{
∣∣A2q(qa,qb,k1,k2)

∣∣2
+ |A2g(qa,qb,k1,k2)|2 θ(sΛ − s12)

−K
(Born)(qa,qa −k1)K

(Born)(qa −k1,−qb)
1
2

θ
(

ln
sΛ

k2
2

− y2

)
θ

(
y2 − ln

k2
1

sΛ

)}
, (3.1)

with A2P being the two particle production amplitudes. At NLO it is necessary to separate multi-
Regge kinematics (MRK) from quasi-multi-Regge kinematics (QMRK) in a distinct way. With this
purpose we introduce an additional scale, sΛ. The meaning of MRK is that the invariant mass of
two emissions is considered larger than sΛ while in QMRK the invariant mass of one pair of these
emissions is below this scale.

The NLO version of Eq. (2.5) then reads

V (qa,qb,η ;kJ,yJ) =
(
K

(Born)
r +K

(virtual)
r

)
(qa,−qb)

∣∣∣
[y]

(a)

+

∫
dD−2k2 dy2 |B(qa,qb,kJ −k2,k2)|2 θ(R0 −R12)

∣∣∣
[y]

(b)

+2
∫

dD−2k2 dy2 |B(qa,qb,kJ ,k2)|2 θ(RJ2 −R0)
∣∣∣
[y]

(c)
. (3.2)

In this expression we have introduced the notation

∣∣∣
[y]

(a,b)
= δ (2) (qa +qb −kJ)δ (η − y(a,b)), (3.3)

∣∣∣
[y]

(c)
= δ (2) (qa +qb −kJ −k2)δ

(
η − y(c)

)
. (3.4)

The various jet configurations demand several y and x configurations. These are related to the
properties of the produced jet in different ways depending on the origin of the jet: if only one gluon
was produced in MRK this corresponds to the configuration (a) in the table below, if two particles
in QMRK form a jet then we have the case (b), and finally case (c) if the jet is produced out of one

5
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of the partons in QMRK. The factor of 2 in the last term of Eq. (3.2) accounts for the possibility
that either emitted particle can form the jet. The vertex can be written in a similar way if one
chooses to work in x configuration language. Just by kinematics we get the explicit expressions for
the different x configurations listed in the following table:

JET y configurations x configurations

a) y(a) = yJ x(a)
1 = |kJ |√

s eyJ x(a)
2 = |kJ |√

s e−yJ

b) y(b) = yJ x(b)
1 =

√
Σ√
s eyJ x(b)

2 =
√

Σ√
s e−yJ

c) y(c) = 1
2 ln x(c)

1

x(c)
2

x(c)
1 = |kJ |√

s eyJ + |k2|√
s ey2 x(c)

2 = |kJ |√
s e−yJ + |k2|√

s e−y2

The NLO virtual correction to the one–gluon emission kernel, K (v), was originally calculated
in Ref. [6]. It includes explicit infrared divergences which are canceled by the real contributions.
The introduction of the jet definition divides the phase space into different sectors. Only if the
divergent terms belong to the same configuration this cancellation can be shown analytically. With
this in mind we add the singular parts of the two particle production |Bs|2 in the configuration (a)

multiplied by 0 = 1−θ(R0 −R12)−θ(R12 −R0):

V =

[(
K

(Born)
r +K

(virtual)
r

)
(qa,−qb)+

∫
dD−2k2 dy2 |Bs(qa,qb,kJ −k2,k2)|2

]∣∣∣
(a)

+
∫

dD−2k2 dy2

[
|B(qa,qb,kJ −k2,k2)|2

∣∣∣
(b)

−|Bs(qa,qb,kJ −k2,k2)|2
∣∣∣
(a)

]
θ(R0 −R12)

+ 2
∫

dD−2k2 dy2

[
|B(qa,qb,kJ ,k2)|2 θ(RJ2 −R0)

∣∣∣
(c)

−|Bs(qa,qb,kJ −k2,k2)|2 θ(R12 −R0)θ(|k1|− |k2|)
∣∣∣
(a)

]
. (3.5)

The cancellation of divergences within the first line is now the same as in the calculation of
the full NLO kernel. The remainder is explicitly free of divergences as well since these have been
subtracted out.

3.2 Embedding of the jet vertex

The NLO corrections to the kernel have been derived in the situation of the scattering of two
objects with an intrinsic hard scale. Hence in the case of γ ∗γ∗ scattering the equation (2.4) is valid
also at NLO if we replace the building blocks by their NLO counterparts. The most important piece
being the jet vertex, which should be replaced by the one derived in the previous subsection.

We now turn to the case of hadron collisions where MRK has to be necessarily modified to
include some evolution in the transverse momenta, since the momentum of the jet will be much
larger than the typical transverse scale associated to the hadron. In the LO case we have already
explained that, in order to move from the symmetric case to the asymmetric one, it is needed
to change the energy scale. The independence of the result from this choice is guaranteed by a
compensating modification of the impact factors

Φ̃(ka) = Φ(ka)−
1
2

k2
a

∫
d2q

Φ(Born)(q)

q2 K
(Born)(q,ka) ln

q2

k2
a

(3.6)
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and the evolution kernel

K̃ (q1,q2) = K (q1,q2)−
1
2

∫
d2qK

(Born)(q1,q)K (Born)(q,q2) ln
q2

q2
2

, (3.7)

which corresponds to the first NLO term of a collinear resummation [7].
The emission vertex couples as a kind of impact factor to both Green’s functions and receives

two such modifications:

Ṽ (qa,qb) = V (qa,qb)−
1
2

∫
d2qK

(Born)(qa,q)V (Born)(q,qb) ln
q2

(q−qb)2

−1
2

∫
d2qV

(Born)(qa,q)K (Born)(q,qb) ln
q2

(qa −q)2 . (3.8)

4. Conclusions

In this work we have extended the NLO BFKL calculations to derive a NLO jet production
vertex in kT –factorization. Our procedure was to ‘open’ the BFKL kernel to introduce a jet defi-
nition at NLO in a consistent way. As the central result, we have defined the jet production vertex
and have shown how it can be used in the context of γ ∗γ∗ or hadron–hadron scattering to calculate
inclusive single jet cross sections. For this purpose we have formulated, on the basis of the NLO
BFKL equation, a NLO unintegrated gluon density valid in the small–x regime. The derived vertex
can be combined with the techniques developed in Ref. [8] to obtain cross sections for multijet
events at hadron colliders.
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