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1. Introduction

The resummation of large logarithms associated with wide angle soft gluon emissions has
been investigated for the last 20 years. For certain observables the contributions from non-global
logarithms [1] have to be taken into account. One of the simplest of these non-global observables
is the ‘gaps-between-jets’ cross-section. This is the cross-section forproducing a pair of high
transverse momentum jets (Q) with a restriction on the transverse momentum of any additional jets
radiated in between the two jets, i.e.kT < Q0 for emissions in the gap. This observable has been
studied [2, 3] and has been measured at HERA and the Tevatron [4].

In the original calculations [2] of the gaps-between-jets cross section, all terms proportional to
αn

s lnn(Q2/Q2
0) that can be obtained by dressing the primary 2→ 2 scattering in all possible ways

with soft virtual gluons were summed. The restriction to soft gluons implies the use of the eikonal
approximation. Let us focus on quark-quark scattering from now on. The corresponding resummed
cross-section can be written

σ = M†SV M with M = exp



−
2αs

π

Q
∫

Q0

dkT

kT
Γ



M0. (1.1)

Here,M is the all-ordersqq → qq amplitude (a 2-component vector in colour space),M0 is the
hard scattering amplitude andSV represents the cut. The anomalous dimension matrixΓ [5] in-
corporates the effect of dressing aqq → qq amplitude with a virtual gluon in all possible ways.
It receives contributions from two distinct regions of the loop-integral: the first corresponds to an
on-shell gluon (to which one can assign a rapidity) and is identical, but with opposite sign, to the
contribution from a real gluon. The second contribution, sometimes referred to as the ‘Coulomb
gluon contribution’ [6] is purely imaginary (iπ terms) and stems from the region where the emitting
parton is on-shell. Eq. (1.1) therefore corresponds to the independent emission of soft gluons, i.e.
the iterative dressing of the 2→ 2 process with a softer gluon: due to perfect real/virtual cancel-
lation outside the gap (the first line of Fig. 1 shows two contributions) one onlyhas to consider
virtual gluons in the gap and the Coulomb terms.

Figure 1: Illustrating the cancellation (and miscancellation) of soft gluon corrections.

However, there is another source of leading logarithms. Let us considerthe two diagrams in
the second line of Fig. 1. A real gluon (which is outside the gap by the definition of our observable)

2



P
o
S
(
D
I
F
F
2
0
0
6
)
0
3
1

Breakdown of coherence? A. Kyrieleis

emits a softer real or virtual gluon. The real-virtual cancellation is guaranteed only for the softest
gluon. Since real gluons aboveQ0 are forbidden in the gap, the two diagrams do not completely
cancel; the left diagram with the virtual gluon being in the gap and itskT being larger thanQ0

survives. The non-global nature of our observable has preventedthe soft gluon cancellation which
is necessary in order that Eq. (1.1) should be the complete result.

It is therefore necessary to include the emission of any number of soft gluons outside the gap
region (real and virtual) dressed with any number of virtual gluons within the gap region. Clearly it
is a formidable challenge to sum all leading logarithms, mainly because of the complicated colour
structure. Progress has been made, working in the largeN approximation [3]. Here, we keep the
exact colour structure but instead we only compute the cross-section forone gluon outside the gap
region. This can be viewed as the first term in an expansion in the number ofout-of-gap-gluons.

2. Super-leading logarithms

In order to extract the leading logarithms we consider soft gluons stronglyordered in transverse
momentum. The cross-section for one gluon outside and any number of gluons inside the gap is
split into two parts corresponding to a virtual or real out-of-gap gluon:

σ1 = −ᾱ
∫ Q

Q0

dkT

kT

∫

out

dy dφ
2π

(ΩV +ΩR) , ᾱ ≡
2αs

π
(2.1)

ΩR = M†
0exp



−ᾱ
Q

∫

kT

dk′T
k′T

Γ†



D†
µ exp



−ᾱ
kT
∫

Q0

dk′T
k′T

Λ†



SR

exp



−ᾱ
kT
∫

Q0

dk′T
k′T

Λ



Dµ exp



−ᾱ
Q

∫

kT

dk′T
k′T

Γ



M0 , (2.2)

ΩV = M†
0exp



−ᾱ
Q

∫

Q0

dk′T
k′T

Γ†



SV exp



−ᾱ
kT
∫

Q0

dk′T
k′T

Γ



 γ exp



−ᾱ
Q

∫

kT

dk′T
k′T

Γ



M0 + c.c. (2.3)

Dµ andγ are the matrices that represent the emission of a real and a virtual gluon (kT ,y,φ ) outside
the gap, respectively. The major new ingredient is the matrixΛ [7] which incorporates the dressing
of theqq → qqg process with a virtual gluon. The emission of the out-of-gap gluon is sandwiched
between two exponentials: this accounts for all possible positions of the out-of-gap gluon within a
chain of any number ofkT -ordered gluons within the gap.

The phase space of the out-of-gap gluon in Eq. (2.1) includes the configurations where it is
collinear to either of the external quarks. One might suppose that the corresponding divergences
cancel amongΩR andΩV . This is true in case of the final state collinear limit. However, in the limit
of the out-of-gap gluon becoming collinear to one of the initial state quarks, which corresponds to
|y| → ∞,kT > Q0, there is no cancellation:

[ΩV +ΩR]|y|→∞ 6= 0. (2.4)
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In particular,(ΩV + ΩR) becomes independent ofy in that limit. This has severe consequences.
As the out-of-gap region stretches to infinity in rapidity, the integral Eq. (2.1) is divergent as it
stands. This divergence however indicates that one needs to go beyond the soft approximation
when considering the out-of-gap gluon. Strictly speaking we ought to work in the collinear (but
not soft) approximation which means that the integral over rapidity ought to be replaced by

∫

d2kT

∫

out

dy
dσ

dyd2kT

∣

∣

∣

∣

soft
→

∫

d2kT





ymax
∫

dy
dσ

dyd2kT

∣

∣

∣

∣

soft
+

∞
∫

ymax

dy
dσ

dyd2kT

∣

∣

∣

∣

collinear



 . (2.5)

In this equationymax is a matching point between the regions in which the soft and collinear approx-
imations are used. Ifymax is in the region in which both approximations are valid the dependence
on it should cancel in the sum of the two terms. Now we know that

∞
∫

ymax

dy
dσ

dyd2kT

∣

∣

∣

∣

collinear
=

∞
∫

ymax

dy

(

dσR

dyd2kT

∣

∣

∣

∣

collinear
+

dσV

dyd2kT

∣

∣

∣

∣

collinear

)

(2.6)

where the contribution due to real gluon emission can be written as

∞
∫

ymax

dy
dσR

dyd2kT

∣

∣

∣

∣

collinear
=

1−δ
∫

0

dz
1
2

(

1+ z2

1− z

)(

q(x/z,µ2)

q(x,µ2)
−1

)

AR +

1−δ
∫

0

dz
1
2

1+ z2

1− z
AR (2.7)

and the contribution due to virtual gluon emission is

∞
∫

ymax

dy
dσV

dyd2kT

∣

∣

∣

∣

collinear
=

1−δ
∫

0

dz
1
2

(

1+ z2

1− z

)

AV . (2.8)

In Eq. (2.7),q(x,µ2) is the parton distribution function for a quark in a hadron at scaleµ2 and
momentum fractionx. The factorsAR andAV contain thez independent factors which describe
the soft gluon evolution. Since we requirey > ymax

1 the upper limit on thez integral is fixed:
δ ≈ kT /Q · exp(ymax− ∆y/2). We have already established thatAR + AV 6= 0 due to Coulomb
gluon contributions to the evolution. If it were the case thatAR +AV = 0 then the virtual emission
contribution would cancel identically with the corresponding term in the real emission contribution
leaving behind a term regularised by the ‘plus prescription’ (since we cansafely takeδ → 0 in the
first term of Eq. (2.7)). This term could then be absorbed into the evolutionof the incoming quark
parton distribution function by choosing the factorisation scale to equal the jet scaleQ.

The miscancellation therefore induces an additional contribution of the form

1−δ
∫

0

dz
1
2

(

1+ z2

1− z

)

(AR +AV) = ln

(

1
δ

)

(AR +AV)+subleading (2.9)

≈

(

−ymax+
∆y
2

+ ln

(

Q
kT

))

(AR +AV). (2.10)

1The approximation arises since we assume for simplicity that∆y is large andδ is small. This approximation does
not affect the leading behaviour and can easily be made exact if necessary.
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Provided we stay within the soft-collinear region in which both the soft and collinear approxima-
tions are valid, theymax dependence will cancel with that coming from the soft contribution in
Eq. (2.5) leaving only the logarithm. The leading effect of treating properlythe collinear region
is therefore simply to introduce an effective upper limit∆y/2+ ln(Q/kT ) to the integration over
rapidity in Eq. (2.5).

2αs

π

∫ Q

Q0

dkT

kT

ln(Q/kT )+∆y/2
∫

Y/2

dy dφ
2π

=
2αs

π
1
2

ln2(Q/Q0)+subleading. (2.11)

This is the super-leading logarithm: the failure of the ‘plus prescription’ hasresulted in the gener-
ation of an extra collinear logarithm. The implications for the gaps-between-jetscross-section are
clear: collinear logarithms can be summed into the parton density functions only up to scaleQ0

and the logarithms inQ/Q0 from further collinear evolution must be handled separately.
The miscancellation Eq. (2.4) and hence the super-leading logarithm is intimatelyconnected

with the Coulomb phase terms. If one artificially switches off theiπ terms in the evolution matri-
ces, then there is full cancellation in Eq. (2.4). Moreover, the super-leading logarithm makes its
appearance at the lowest possible order inαs, i.e. atO(α4

s ) relative to the Born cross-section. This
is due to the fact that at lower orders anyiπ term is cancelled by a corresponding term from the
complex conjugate contribution. The firstiπ terms and the first super-leading logarithm appear in
case of four soft gluons:

σ1 ∼ σBorn

(

2αs

π

)4

ln5
(

Q
Q0

)

π2Y. (2.12)

At higher orders inαs more gluons can be outside the gap. However, to resum the double loga-
rithms to all orders a deeper understanding of the colour evolution of multi-parton systems seems
necessary.

Indeed we appear to have uncovered a breakdown of QCD coherence: radiation at large angles
does appear to be sensitive to radiation at low angles. However this strikingconclusion was arrived
at under the assumption that it is correct to order successive emissions intransverse momentum.
Coherence indicates that one does not need to take too much care over theordering variable, e.g.kT ,
E andk2

T /E are all equally good ordering variables but the super-leading logarithms arise counter
to the expectations of coherence and in particular as a result of radiation which is both soft and
collinear. It is therefore required to prove the validity ofkT ordering before we can claim without
doubt the emergence of super-leading logarithms or confirm their size.

3. Numerical results

We numerically compute the out-of-gap cross section which is the sum of Eq. (2.2) and Eq.
(2.3) and which which we generically denoteσ1. The purely superleading logarithmic part ofσ1

is obtained by considering the initial state collinear limit and performing the integral over rapidity
over an interval of size ln(Q/kT ). The result is multiplied by 2 to account for the possibility that
the out-of-gap gluon can be on either side of the gap. We refer to the cross section thus computed
as ‘SLL’ in the figures. For comparison, we also compute the sum of Eq. (2.2) and Eq. (2.3)
without making the collinear approximation. In this case the integral overy is over the region
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Y/2< |y|< ∆y/2+ ln(Q/kT ) where∆y =Y +2. This cross-sections is labelled ‘all’ and necessarily
includes a partial summation of the single logarithmic terms as well as the super-leading terms. The
strong coupling is fixed atαs = 0.15. Fig. 2 showsσ1 as a function ofL = ln(Q2/Q2

0), normalized
to the fully resummed cross-sectionσ0 corresponding to zero gluons outside of the gap region, i.e.
as determined by Eq. (1.1). The super-leading series is generally small relative to the ‘all’ result
for L . 4, which indicates that the single logarithms are phenomenologically much more important
than the formally super-leading logs at these values ofL. Of course one should remember that our
calculations are for the emission of one gluon outside the gap region and the full super-leading
series requires the computation of any number of such gluons.

From a more theoretical perspective it is interesting to take a look at the cross-sections out to
larger values ofY , see Fig. 3. Note that this time we have normalized the cross-section by the
square of the in-gap cross-section. The cross-section saturates at large enoughY , i.e. σ1 ∼ −σ2

0 .
In [9] we calculated the conventional gap-between-jets cross-section inthe high energy limit and
showed that it is equivalent to the BFKL result in the region in which both arevalid. Here, we
find that in the high-energy (largeY ) limit the cross section for one emission outside the gap is
proportional to the square of the conventional gap cross-section, offering a tantalizing clue to the
structure of higher orders. A deeper understanding of this connectionwould almost certainly open
new avenues to understanding non-global observables.
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all
SLL

Figure 2: L dependence of the out-of-gap cross-section (normalized tothe in-gap cross-section) at Y=3

4. Outlook

We appear to have found the breakdown of the intuitive picture of QCD coherence: superlead-
ing logarithms appear in the gaps-between-jets observable as the consequence of the sensitivity
of soft wide angle gluon emission to collinear emission. The full confirmation ofthis finding
though requires the proof of the validity ofkT -ordering. The new super-leading contributions are
not restricted to the gaps-between-jets observable. We expect them to arise generally in non-global
observables and potentially as additional leading logarithms also in global observables where non-
global contributions are subleading. The new contributions will thereforepossibly have an impact

6



P
o
S
(
D
I
F
F
2
0
0
6
)
0
3
1

Breakdown of coherence? A. Kyrieleis

-25

-20

-15

-10

-5

 0

 0  20  40  60  80  100  120  140

σ 1
/σ

02

Y

SLL, L=3
SLL, L=5
SLL, L=7

Figure 3: Y dependence of the out-of-gap cross-section normalized to the square of the in-gap cross-section
at three different values ofL and plotted out to very largeY .

on a wide spectrum of processes and observables, such as eventshape variables,kT -distributions
or particle production near threshold. The connection between the super-leading logarithms and
high-energy QCD appears to offer intriguing clues for their resummation and the understanding of
non-global observables.

References

[1] M. Dasgupta and G. P. Salam,Phys. Lett. B 512, 323 (2001),JHEP 0203, 017 (2002)

[2] G. Oderda, G. Sterman,Phys. Rev. Lett. 81, 3591 (1998); G. Oderda,Phys. Rev. D 61, 014004 (2000);
C. F. Berger, T. Kucs and G. Sterman,Phys. Rev. D 65, 094031 (2002)

[3] R. B. Appleby and M. H. Seymour,JHEP 0212, 063 (2002); R. B. Appleby and M. H. Seymour,
JHEP 0309, 056 (2003)

[4] M. Derrick et al [ZEUS Collaboration],Phys. Lett. B 369, 55 (1996); C. Adloffet al [H1
Collaboration],Eur. Phys. J. C 24, 517 (2002); B. Abbottet al [D0 Collaboration],Phys. Lett. B 440,
189 (1998); F. Abeet al [CDF Collaboration],Phys. Rev. Lett. 80, 1156 (1998); F. Abeet al [CDF
Collaboration],Phys. Rev. Lett. 81, 5278 (1998)

[5] M. G. Sotiropoulos and G. Sterman,Nucl. Phys. B 419, 59 (1994); N. Kidonakis, G. Oderda and
G. Sterman,Nucl. Phys. B 531, 365 (1998)

[6] J. P. Ralston, B. Pire,Phys. Rev. Lett. 49, 1605 (1982); B. Pire and J. P. Ralston,Phys. Lett. B 117,
233 (1982); Y. L. Dokshitzer and G. Marchesini,JHEP 0601, 007 (2006)

[7] A. Kyrieleis and M. H. Seymour,JHEP 0601, 085 (2006)

[8] J. R. Forshaw, A. Kyrieleis and M. H. Seymour,JHEP 0608, 059 (2006)

[9] J. R. Forshaw, A. Kyrieleis and M. H. Seymour,JHEP 0506, 34 (2005)

7


