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We present results from a large global VLBI survey of compactradio sources at 86 GHz begun in

October 2001. The main goal of the survey was to increase the total number of objects accessible

for future 3-mm VLBI imaging by factors of 3∼ 5. The survey data attained the baseline sensi-

tivity of 0.1 Jy, and image sensitivity of better than 10 mJy/beam. To date, a total of 127 compact

radio sources have been observed. The observations have yielded images for 109 sources, and

only 6 sources have not been detected†. Flux densities and sizes of core and jet components of all

detected sources have been measured using Gaussian model fitting. From these measurements,

brightness temperatures have been estimated, taking into account resolution limits of the data.

Here, we compare the brightness temperatures of the cores and secondary jet components with

similar estimates obtained from surveys at longer wavelengths (e.g. 15 GHz). This approach can

be used to study the phenomena related to mechanisms of initial jet acceleration (accelerating or

decelerating sub-pc jets?) and jet composition (electron-positron or electron-proton plasma?).
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∗Speaker.
†The remaining 12 objects have been detected but could not be imaged dueto insufficient closure phase information.
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1. Observations

Millimetre-wavelength VLBI (mm-VLBI) provides a unique tool for exploring the physical
nature of compact radio sources. The higher resolution1 of VLBI observations at millimetre wave-
lengths allows us to image directly the VLBI core and the knots with subparsec-scale resolution.
Furthermore, in AGN, synchrotron radiation becomes optically thin at wavelengths between 1 cm
and 1 mm [1]. Therefore, the mm-VLBI imaging makes it possible to look deeperinto the VLBI
cores that are invisible at centimetre wavelengths. The first detection of single-baseline interference
fringes of 89 GHz (3.4 mm) VLBI observation was reported by [2], demonstrating the feasibility of
3-mm VLBI. A decade later, the first global mm-VLBI array, the Coordinated Millimeter VLBI Ar-
ray (CMVA), was established in 1995 with support from radio observatories throughout the world.
The number of participating telescopes gradually increased up to 12. The CMVA discontinued
to organize mm-VLBI experiments in 2002. Since then, the activity of mm-VLBI experiments
has been continued through the Global mm-VLBI Array (GMVA). The GMVAcarries out regular,
coordinated global VLBI observations at 86 GHz, providing good qualityimages with a typical
angular resolution of 50-70 micro-arcseconds (µas). In order to increase the number of objects
imaged at 86 GHz, four detection and imaging surveys have been conducted to date, with a total
of 124 extragalactic radio sources observed at 86 GHz (see [3], [4], [5], [6]). Fringes have been
detected in 44 objects, but only 24 radio sources have been successfully imaged so far. Table 1
gives an overview of the VLBI surveys at 86 GHz. The survey presented here was envisaged as a
project that would increase the number of objects imaged at 86 GHz by a factor of 3 to 5.

The source selection of this survey was based on the results from the VLBI surveys at 22 GHz [7],
15 GHz [8], and on source fluxes obtained from the multifrequency monitoring data from Met-
sähovi at 22, 37, and 86 GHz [9] and from Pico Veleta at 90, 150, and230 GHz (Ungerechts, priv.
comm.). Using these databases, we selected the sources with expected flux density above≥ 0.3 Jy
at 86 GHz. We excluded some of the brightest sources already imaged at 86 GHz, and focused on
those sources that had not been detected or imaged in the previous surveys. In order to optimize
theuv-coverage of the survey data, sources at higher northern declinations (δ > −40◦) were pre-
ferred. According to the aforementioned selection criteria, a total of 127 compact radio sources
were selected and observed.

The survey observations were conducted during three global mm-VLBI sessions on October
2001, April 2002 and October 2002. The participation of the large and sensitive European antennas
(the 100-m radio telescope at Effelsberg, the 30-m mm-radio telescope atPico Veleta, the 6×15-
m interferometer on Plateau de Bure) resulted in a typical single baseline sensitivity of ∼ 0.1 Jy
and an image sensitivity of better than 10 mJy/beam. Every source in the survey was observed for
3-4 scans of 7-min duration (snapshotmode). The data were recorded either with 128-MHz or
64-MHz bandwidth using the MkIV VLBI system with 1- and 2- bit sampling adopted at different
epochs. The observations were made in left circular polarization (LCP).3 to 4 scans per hour were
recorded, using the time between the scans for antenna focusing, pointingand calibration. The data
were correlated using the MkIV correlator of Max-Planck-Institut für Radioastronomie (MPIfR) in
Bonn. Fringes were searched with the HOPS packagefourfit and AIPS2 task FRING. The ampli-

1Global VLBI observations at 86 GHz offer about 6 times better resolutionthan space VLBI observations at 5 GHz.
2The NRAO Astronomical Image Processing System.
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Table 1: VLBI surveys at 86 GHz

Surveys Nant ∆S ∆Im Dimg Nobs Ndet Nimg

(1) (2) (3) (4) (5) (6) (7) (8)

1 3 ∼0.5 ... ... 45 12 ...
2 2−5 ∼0.7 ... ... 79 14 ...
3 6−9 ∼0.5 ∼30 70 67 16 12
4 3−5 ∼0.4 ∼20 100 28 26 17

Total number of unique objects: 124 44 24

Properties of this survey:
12−14 ∼0.2 ≤10 50 127 121 109

Notes:Columns: 1 – references of previous VLBI surveys at 86 GHz; 2 – number of participating antennae; 3 – average

baseline sensitivity [Jy]; 4 – average image sensitivity [mJy/beam]; 5 – typical dynamic range of images; 6 – number of

sources observed; 7 – number of objects detected; 8 – number of objects imaged.References of surveys: 1 – [3]; 2 –

[4]; 3 – [5]; 4 – [6].

tude calibration was made using the system temperature, antenna gain, and opacity measurements
carried out at each station during the observations. The AIPS task APCAL was used to calibrate the
amplitudes. From the phase- and amplitude-calibrated data, the images were made using DIFMAP
software [10]. The detailed description of the fringe-fitting and imaging will be given in [11].

2. Images

We have detected 121 sources and have produced hybrid maps of 109 sources for which the
data contain a sufficiently large number ofuv-points. Out of 109 sources, 90 sources are imaged
for the first time at 86 GHz, increasing the number of sources ever imaged with86-GHz VLBI
observations up to 110. To illustrate our results, we present here the images for two relatively weak
objects. These are the first 3-mm VLBI maps for the respective sources. For each image, plots of
the uv-coverage and of the visibility amplitudes againstuv-radius are presented. Here we report
details on two sources.

0016+731:
The image in Figure 1 (top, right) shows two jet components along the different directions,P.A. ∼

−179◦ andP.A. ∼ 150◦, appearing to be bent to the southeast. The direction of the jet is in a good
agreement with the VLBI images of 0016+731 obtained at 43 GHz [12] and 15 GHz [13]. The peak
flux density is 0.196 Jy/beam with a beam size of 0.046×0.069 mas and the lowest contour level is
9.8 mJy. The brightness temperature (Tb) of the core component is (2.5±0.8)×1011 K. Since the
source is at high declination, theuv-sampling (shown in the left panel) is nearly circular resulting in
a very regular restoring beam. A decrease of the visibility amplitude with theuv-distance (middle
panel) indicates that the source is resolved.

1923+210:
In the image in Figure 1 (bottom, right), we identify one feature in the jet extending alongP.A. ∼
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lowest contour: 9.8mJy

0.046 x 0.069 mas

lowest contour: 12.0mJy

0.044 x 0.289 mas

Figure 1: Images with the distribution of theuv-sampling and the visibility amplitudes of 0016+731 and 1923+210.

The contours are drawn at -1,1,1.4,...,1.4n of the lowest flux density levels, 9.8 mJy and 12.0 mJy, respectively.

−114◦, which is similar to the orientation of the jet observed at lower frequencies[14]. The peak
flux density is 0.301 Jy/beam, with a beam size of 0.044×0.289 mas, and the lowest contour level
is 12.0 mJy. The brightness temperature of the core component is (5.1±1.8)×1010 K.

3. Brightness temperature and jet physics

Using the Gaussian-model fitted images of 109 sources, we have determinedbasic properties
of the core and jet components for all of the imaged sources: total flux density, Stot, peak flux
density,Speak, post-fit rms,σrms, size,d, radial distance,r (for jet components), and position angle,
θ (for jet components). For all parameters, the uncertainties of measurements have been obtained,
taking into account the resolution limits [15]:

dmin =
21+β/2

π

[

πabln2 ln
SNR

SNR−1

]1/2

, (3.1)

which is the minimum resolvable size of a component in an image. The minimum resolvable size
depends on the axes of the restoring beam,a andb, and the signal-to-noise ratio,SNR. The weight-
ing function,β , is 0 for natural weighting or 2 for uniform weighting. The observed brightness
temperature,Tb, of a component in the rest frame of the source is given by:

Tb =
2ln2
πkB

Stotλ 2(1+z)
d2 , (3.2)
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Figure 2: Left: A plot of measuredTb in the cores of the jets vs. maximum apparent jet speeds taken
from 2-cm survey. Triangles are the lower limits.Right: Changes of the brightness temperature along the
jets of several sources. Blue squares are the measuredTb. Red circles are the predictedTb in adiabatically
expanding shocks with the initial brightness temperature equal to that measured in the core of the jet.

whereλ is the wavelength of observation,z is the redshift, andkB is the Boltzmann constant. If
d < dmin, then the lower limit ofTb is obtained withd = dmin. The observed brightness tempera-
tures can be used to study the physics of the relativistic jets. One of the applications is to model the
observed distribution ofTb by a population of jets in which all jets are randomly oriented and have
the same Lorentz factor,γj , the same spectral index,α , and the same intrinsic brightness tempera-
ture,T0 (see [6]). Since the orientation of the jets is random, and the observed distribution of Tb is
caused only by Doppler boosting, the predicted distribution should be corrected for the bias due to
the Doppler boosting. Lobanov et al. [6] applied this approach to a smaller sample of VLBI images
at 86 GHz, inferring the range ofT0 ∼ 1−4×1011 K that reproduces the observed distribution in
the VLBI cores. We expect a similar result for our larger sample. Anotherapplication is to study
the intrinsic brightness temperatures of the VLBI cores, by using the observedTb at 86 GHz from
our survey and the maximum apparent jet speeds at 15 GHz taken from [8]. In order to constrain
the intrinsic brightness temperature, the method from [16] could also be applied to our sample. In
the left panel of Figure 2, we can see a hint of correlation of the observed brightness temperatures
of the VLBI cores with the maximum apparent jet speeds of the jets measured at 15 GHz. The right
panel of Figure 2 shows the profile ofTb along the main jet direction. The values of brightness
temperatures in the jets predicted assuming adiabatic expansion in a relativistic plasma [6] agree
well with the observed brightness temperatures. Using these three approaches to analyze the 86-
GHz data, we hope to be able to further constrain physical models proposed to explain the nature
of compact relativistic jets.
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