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Based on the VLBI Space Observatory Programme (VSOP) cétbemng at 1.6 and 5 GHz, we
find that the luminous high-redshifz & 3.215) quasar PKS 1402+044 (J1405+0415) has a pro-
nounced “core—jet” structure. The jet shows a steeper sgaéntiex and lower brightness tem-
perature with the increase of the distance from the core.va@hiation of brightness temperature
is basically consistent with the shock-in-jet model. Assgrthat the jet is collimated by the
ambient magnetic field, we estimate the mass of the centjatblis~ 10°M..,. The upper limit

of the jet proper motion of PKS 1402+044 is 0.03 mashyf~ 3c) in the east-west direction.
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1. Introduction

High-redshift radio quasars can facilitate a comparison of structucgdepties across the
redshift space and provide important inputs into tests of cosmological madels,as the “ap-
parent angular size—redshift” and “apparent proper motion—ratishifitions. PKS 1402+044
(J1405+0415) is a flat-spectrum 0.58-Jy radio source from the £arkeGHz survey. Optically,
itis a 19.6-magnitude stellar object with the redshift 3.215. MERLIN observations at 1.6 GHz
indicated that there is a secondary component at a separatidi8 @b @he south-west at the po-
sition angle of-123 and a faint extended emission &t33at the position angle of 106°. VLBI
observations at 5 GHz found that the main component consists of a coogpaetnd a resolved jet
extending to~ 18 mas to the wesf|[5]. Here, we present some results of VLBI Spacer@itsry
Programme (VSOP) observations at 1.6 and 5 GHz. Throughout the ffsmeosmological model
with Hp = 75 km st Mpc™1, Q= 0.3 andQ, = 0.7 is adopted.

2. Observations and data reduction

Using the VSOP space antenna HALCA and the Very Long Baseline AxaBA), we ob-
served the radio quasar PKS 1402+044 in left circular polarization fous at 1.6 GHz on 21
Jan 2001 and for 7 hours at 5 GHz on 20 Jan 200briori calibrations were done with AIPS in
a standard way. Fringes were detected on all space—ground basglmegseful bandwidth after
flagging the side channels spans for 22.8 MHz. The imaging, self-calibratid model fitting
were done in Difmap.

3. Resultsand discussion
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Figure 1. VLBI images of PKS 1402+044 (J1405+0415) at 1.6 and 5 GHz. réb&angle in the 1.6-GHz
VLBA image shows the area of the 5-GHz VSOP image.

Figure[l displays a clear core—jet morphology of the quasar PKS 14@2+Dhe naturally
weighted VLBA image detects the weak emission extending up tth0 mas { 1 kpc projected
distance). The jet shows a wide section between 20 and 70 mas (140 -cp0@igating an
expanding jet propagating in a dense ambient medium. Here, we identify itiygact core (com-
ponent A) and five emission regions (components B — F). The naturallyhtegid-GHz VSOP
image shows that the inner jet is resolved into brighter emission regions. Wftrmnveight-
ing, the jet is basically resolved out. There is a synchrotron self-abdaxeak component (Al)
appearing at the beginning of the jet near the brightest component (A2).
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Based on the spectral index image between the two frequencies, we tlatrithe spectral
indexa (S, O v?) varies from+0.1 in the inner nuclear region te1.0 in the outer jet regions.
To further confirm this variation, we calculated the spectral index of eaafponent using five-
frequency images. The 2.3/8.4-GHz data are from the RRFTBe 15-GHz data are from the
VSOP support survey by Gurvits et al. (in preparation). The core coemt has a flat spectrum
a = —0.19, but the jet components have steeper speagaz = —0.55, ap = —0.74. The spec-
tral difference between the core and jet leads to a decreasing jetddtarrdensity ratio with
increasing frequency. Furthermore, this difference demonstratexptenation of a decreasing
jet-to-core flux density ratio at a certain observation frequency with @&sing redshift for a large
radio quasar sampl [3].

If the jet is collimated by the ambient magnetic fil@g, (~ 10~° G) of the host galaxy, the
mass of the central objeMgn can be related to the width of the jgs [@]: Mgy ~ Fiet (Bext/ Bgr)l/ 2
103M.,, whereBy, is the magnetic field at the Schwarzschild radius. Based on the theoretical
assumption[[4], one can expect to hag ~ 10* G. Using the measured size of the component A2
(0.3 mas), the mass of the central objecti40° M.

For the radio core, the brightness temperafigre= 4 x 102K is close to but somewhat larger
than the inverse Compton limit. Comparing with the limiting brightness temperatark085°/
K in the equipartition jet model of Blandford and Konid] [2], a lower limit to thepter factor
d ~ 22 can be determined. Following the shock-in-jet model of Marsdhenf&@assume that the
radio emission is dominated by adiabatic energy losses. The jet plasma hagralge energy
distribution, N(E)dE O E"*dE. The magnetic field varies & 0 d~2. The Doppler factor is
assumed to vary weakly throughout the jet. There is a simple relalige:= Tg core(diet/core) %,
wheredie; represents the measured size of core and jet features arjd(2s+ 1) + 3a(s+1)| /6.
We takes= 2.5 anda = 1 corresponding to the transverse orientation of the magnetic field in the jet
[B]. The estimated brightness temperature values are basically consigtetitaxobserved values.

Comparing with another early VLBI observation at 5 GHz in 1986 by Gurtits.e[8], we
estimated an upper limit of 0.03 mas yr(~ 3c) of the proper motion in the EW direction.
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