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1. Introduction

The classical integrable1 two-dimensional non-linear sigma models are relatively easy to solve.

At least, when the corresponding Lax pair is known, one can construct a large class of the so called

finite gap solutions [4]. These solutions are known to constitute a dense (in the sense of parameters

of initial conditions) subset in the space of solutions of the model.

However, the quantization of such classically integrable sigma-models usually creates sub-

stantial problems and is known to be virtually impossible todo in the direct way, in terms of the

original degrees of freedom of the classical action. The existing quantum solutions are usually

based on plausible assumptions which are difficult to prove in a systematic way.

There were a few successful, though not completely justified, attempts to find the quantum

solutions ofSU(N)×SU(N) principal chiral field model (PCF), starting from the original action.

A. Zamolodchikov and Al. Zamolodchikov [5] found the factorizable bootstrap S-matrices for the

O(N) sigma models, later generalized to many other sigma models.TheO(4) case which we are

focused on in this paper, is equivalent to theSU(2)×SU(2) PCF. Polyakov and Wiegmann [6, 7]

found the equivalent non-relativistic integrable Thirring model reducible in a special limit to the

PCF. Faddeev and Reshetikhin [8] proposed the "equivalent"double spin chain for theSU(2)×
SU(2) PCF. In both cases, the equivalence is based on subtle assumptions, difficult to verify, though

both approaches perfectly reproduce the solution following from the S-matrix approach [9].

The verification of such solutions is usually based on the perturbation theory, largeN limit or

Monte-Carlo simulations [5,9–11].

Here we address this question in a more systematic way. Namely, we will reproduce all clas-

sical finite gap solutions of a sigma model from the Bethe ansatz solution for a system of physical

particles on the space circle, in a special large density andlarge energy limit. We shall call it the

continuous limit though, as we show, It is the actual classical limit of the theory. We will see that

in this limit the Bethe Ansartz equations (BAE) diagonalizing the periodicity condition, will be

reduced to a Riemann-Hilbert problem. Such a limit in the Bethe ansatz equation is similar to the

one considered in [12–15]) defining the algebraic curve of the finite gap method for the underlying

classical model.

We demonstrate the method inspired by [16] and worked out in [2, 3] for theSU(2)×SU(2)

principal chiral field (PCF) with the action2

S=

√
λ

8π

∫

dσdτ tr∂ag†∂ag, g∈ SU(2) . (1.1)

In [2] we also repeated this construction for theO(6) sigma-model and explained how the gener-

alization to theO(2n) model can be done in a trivial way. In fact, as it will be clear below, the

method seems to be general enough to work for all sigma-models described by a factorizable boot-

1i.e. having an infinite number of integrals of motion
2note that the couplingλ is chosen here as the ’tHooft coupling in the AdS/CFT correspondence context.
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strap S-matrix. Hence it gives a new way to relate, in a general and systematic way, the classical

and quantum integrability.

The model (1.1) is equivelent to theO(4) sigma model where the fundamental field is the

four dimensional unit vector~X(σ ,τ). Therefore, at least classically, it can be used to study a

string on theS3×R1 background. Indeed, our main motivation for this study was the search for

new approaches in the quantization of the Green–Schwarts–Metsaev–Tseytlin superstring on the

AdS5×S5 which is classically (and most-likely quantum-mechanically as well) an integrable field

theory. The simplest nontrivial subsector of it is described by the sigma model on the subspace

S3×Rt, whereRt is the coordinate corresponding to the AdS time. The time direction will be al-

most completely decoupled from the dynamics of the rest of the string coordinates, appearing only

through the Virasoro conditions. These conditions are a selection rule for the states of the theory

or, better to say, for the classical solutions appearing when we pick the classical limit in Bethe

equations. The degrees of freedom eliminated in this way arethe longitudinal modes associated

with the reparametrization invariance of the string.

Of course, in the absence of the fermions and of the AdS part ofthe full 10d superstring theory,

this model will be asymptotically free and will not be suitable as a viable (conformal) quantum

string theory. Nevertheless, in the classical limit we shall encounter the full finite gap solution of

the string in theSO(4) sector found in [1]. The method can be generalized to theSO(6) sector

in [17] and hopefully to the full Green–Schwarts–Metsaev–Tseytlin superstring on theAdS5×S5

space, including fermions, where the finite gap solution wasconstructed in [17] (although it appears

to be more difficult for the last, and the most interesting, system).

At the end of the paper we go slightly further and derive from these BAE the conjectured

asymptotic string Bethe ansatz (the so called AFS-equation[19]) with its nontrivial dressing factor

to the leading order in largeλ which is known to captures some quantum effects, such as level

spacing [20].

1.1 Classical SU(2)×SU(2) Principal Chiral Field

In this section we will review the classical finite gap solution of theSU(2)×SU(2) principal

chiral field. We will essentially go through the construction of [1]3 to fix the notations for the easy

comparison with the quantum Bethe ansatz solution of the model. As mentioned in the introduction,

classically this model can be used to describe the string onS3×Rt ⊂ AdS5×S5. At the quantum

level, even dropping all the rest of the degrees of freedom, one might still expect to capture some

features of the full superstring theory. As we will see in thelatter sections, this is indeed the case.

1.1.1 The model

The action (1.1) possesses the obvious global symmetry under the right and left multiplication

by SU(2) group element. The currents associated with this symmetry are, respectively,

jR≡ j = g−1dg, jL = dgg−1 , (1.2)

3with a little generalization to the excitations of both leftand right sectors

3
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and the corresponding Noether charges read

QR =
i
√

λ
4π

∫ 2π

0
dσ tr

(

jRτ τ3) , QL =
i
√

λ
4π

∫ 2π

0
dσ tr

(

jLτ τ3) . (1.3)

In the quantum theory these charges are positive integers4.

Virasoro conditions read tr( jτ ± jσ)2 =−2κ2
±, where we used the residual reparametrization

symmetry to fix theAdSglobal timeY to

Y =
κ+

2
(τ + σ)+

κ−
2

(τ−σ) . (1.4)

Finally, from the action, we read off the energy and momentumas

Ecl±Pcl =−
√

λ
8π

∫ 2π

0
tr( jτ ± jσ )2dσ =

√
λ

2
κ2
± . (1.5)

1.2 Classical Integrability and Finite Gap Solution

The equations of motion and the fact that the current is of theform j = g−1dgcan be encoded

into a single flatness condition for a Lax connection over theworld-sheet [4],

[

∂σ −
x jτ + jσ
x2−1

,∂τ −
x jσ + jτ
x2−1

]

= 0. (1.6)

In particular, we can then use this flat connection to define the monodromy matrix

Ω(x) =
←
P exp

∫ 2π

0
dσ

x jτ + jσ
x2−1

. (1.7)

By constructionΩ(x) is a unimodular matrix (and also unitary for realx) whose eigenvalues can

therefore be written as
(

ei p̃(x),e−i p̃(x)
)

(1.8)

where p̃(x) is called the quasi-momentum. Thesefunctions of xdo not depend on timeτ due to

(1.6) and provide therefore an infinite set of classical integrals of motion of the model.

From the explicit expression (1.7) we can determine the behaviour of the quasi-momentum

close tox =±1,0,∞. Using (1.5) and (1.3), we obtain

p̃(x) ≃ − πκ±
x∓1

, (1.9)

p̃(x) ≃ 2πm+
2πQL√

λ
x, (1.10)

p̃(x) ≃ −2πQR√
λ

1
x

. (1.11)

4It will be important for future comparisons to notice that the normalization of the generators is such that the smallest

possible charge is 1 as follows from the Poisson brackets forthe current.
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Figure 1: Algebraic curve from the finite gap method. u and v cuts correspond to cuts inside and outside the

unit circle respectively.

Since, by construction,Ω(x) is analytical in the whole plane except atx = ±1 where it develops

essential singularities, it follows from eq.(1.12) that for x 6=±1 the only singularities of

p̃′(x) =− 1
√

4− (trΩ(x))2

d
dx

trΩ(x) . (1.12)

are of the form

p̃′ (x→ xk)≃
1√

x−xk
. (1.13)

If we are looking for a finite gap solution the numberK of these cuts is finite and we conclude

that p̃′(x),−p̃′(x) are two branches of an analytical function defined by a hyperelliptic curve (see

fig.1),

(p′)2 =
P2(x)
Q(x)

, (1.14)

whereQ(x) has 2K zeros and the order ofP(x) is fixed by the largex asymptotics eq.(1.11). We

denote the branch cuts ofp′(x) by u (v) cuts if they are inside (outside) the unit circle. These

cuts are the loci where the eigenvalues of the monodromy matrix become degenerate. Thus, when

crossing such cut the quasi-momentum may at most jump by a multiple of 2π which characterizes

each cut,

p̃/(x) = πnk, x∈Ck (1.15)

wherep̃/(x) is the average of the quasi-momentum above and below the cut,

p̃/(x) ≡ 1
2

(p̃(x+ i0)+ p̃(x− i0)) . (1.16)

Each cut is parameterized by the filling fraction numbers which we define as integrals along

5
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A-cycles of the curve (see fig.1)5

Sv
i =−

√
λ

8π2i

∮

Av
i

p̃(x)

(

1− 1
x2

)

dx, Su
i =

√
λ

8π2i

∮

Au
i

p̃(x)

(

1− 1
x2

)

dx. (1.17)

Finally, imposing (1.15,1.17,1.9,1.10,1.11) one fixes completely the undetermined constants in

(1.14).

2. Quantum Bethe Ansatz and Classical Limit: O(4) Sigma-Model

We will describe a quantum state of theO(4) sigma model by a system ofL relativistic particles

of massµ/2π put on a circle of the length 2π. The momentum and the energy of each particle can

be suitably parametrized by its rapidity asp = µ
2π sinhθ ande= µ

2π coshθ so that the total energy

and momentum will be given by

P =
µ
2π

L

∑
α=1

sinh(πθα) , (2.1)

E =
µ
2π

L

∑
α=1

cosh(πθα) . (2.2)

These particles transform in the vector representation under O(4) symmetry group or in the bi-

fundamental representations ofSU(2)R×SU(2)L. The scattering of the particles in this theory

is known to be elastic and factorizable: the relativistic S-matrix Ŝ(θ1−θ2) depends only on the

difference of rapidities of scattering particlesθ1 andθ2 and obeys the Yang–Baxter equations. As

was shown in [5] (and in [7,9,23,24] for the general principle chiral field) these properties, together

with the unitarity and crossing-invariance, define essentially unambiguously the S-matrix̂S. Let us

recall briefly how the bootstrap program goes. From the symmetry of the problem we know that

Ŝ= ŜL× ŜR (2.3)

whereSL,R are built by use of the twoSU(2) invariant tensors and can therefore be written as

SR,L(θ)a′b′
ab =

S0(θ)

θ − i

(

θ δ a′
a δ b′

b − i f (θ)δ b′
a δ a′

b

)

.

Imposing the Yang-Baxter equation onŜyields f (θ) = 1, while the unitarity constrains the remain-

ing unknown function to obey

S0(θ)S0(−θ) = 1 (2.4)

and crossing symmetry requires

S0(θ) =

(

1− i
θ

)

S0(i−θ) . (2.5)

5It was pointed out in [17, 21] and shown in [22] thatSu,v
i are the action variables so that quasi-classically they

indeed become integers. We will also find a striking evidencefor this quantization on the string side when finding

the classics from the quantum Bethe ansatz where these quantities are naturally quantized. Indeed, from the AdS/CFT

correspondence these filling fractions are expected to be integers since this is obvious on the SYM side [1,21].

6
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From (2.4), (2.5) and the absence of poles on the physical strip 0 < θ < 2 one can compute the

scalar factor:S0(θ) =
Γ(− θ

2i )Γ( 1
2+ θ

2i )
Γ( θ

2i )Γ( 1
2− θ

2i )
. For our purpose we just need the much easier to extract large

θ asymptotics,

i logS2
0(θ) ∼ 1/θ +O(1/θ3) . (2.6)

2.1 Bethe Equations for Particles on a Circle

When this system of particles is put into a finite 1-dimensional periodic box of the lengthL

the set of rapidities of the particles{θα} is constrained by the condition of periodicity of the wave

function |ψ〉 of the system,

|ψ〉= eiµ sinhπθα

←−
α−1

∏
1

Ŝ
(

θα −θβ
)

−→
α+1

∏
N

Ŝ
(

θα −θβ
)

|ψ〉 (2.7)

where the first term is due to the free phase of the particle andthe second is the product of the

scattering phases with the other particles. The arrows stand for ordering of the terms in the product.

µ = m0L is a dimensionless parameter. Diagonalization of both the Land R factors in the process

of fixing the periodicity (2.7) leads to the following set of Bethe equations which may be found

from eq.(2.7) by the algebraic Bethe ansatz method [25,26]6

2πmα = µ sinhπθα −
L

∑
β 6=α

i logS2
0

(

θα −θβ
)

−
Ju

∑
j

i log
θα −u j + i/2
θα −u j − i/2

−
Jv

∑
k

i log
θα −vk + i/2
θα −vk− i/2

, (2.8)

2πnu
j =

L

∑
β

i log
u j −θβ − i/2

u j −θβ + i/2
+

Ju

∑
i6= j

i log
u j −ui + i
u j −ui− i

, (2.9)

2πnv
j =

L

∑
β

i log
vk−θβ − i/2

vk−θβ + i/2
+

Jv

∑
l 6=k

i log
vk−vl + i
vk−vl − i

, (2.10)

whereu’s andv’s are the Bethe roots appearing from the diagonalization of(2.7) and characterizing

each quantum state. A quantum state with no such roots corresponds to the highest weight ferro-

magnetic state where all spins of both kinds are up. Adding au (v) roots corresponds to flipping

one of the right (left)SU(2) spins, thus creating a magnon7. The left and right charges of the wave

function, associated with the twoSU(2) spins are given by

QL = L−2Ju , QR = L−2Jv . (2.12)
6We took the logarithms of the Bethe ansatz equations in theirstandard, product form. This leads to the integers

mα ,nu
j ,n

v
j defining the choice of the branch of logarithms.

7This is particularly clear from equations (2.9,2.10) whichin the limit λ → 0, whenθα ≃ 0, are precisely the usual

Bethe equations for the diagonalization of an Heisenberg hamiltonian for the periodic chain of lengthL, originally soved

by Hans Bethe [27], provided we identify the momentum of magnons with

eip =
u+ i/2
u− i/2

. (2.11)

7
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Figure 2: We plotV(z) for M = 1,5,9,13 (lighter to darker gray). It is clear that the potential approaches

the box potential asM→ ∞.

This model with massive relativistic particles and the asymptotically free UV behavior cannot

look like a consistent quantum string theory. Only in the classical limit we can view it as a string toy

model obeying the classical conformal symmetry. In the classical case it is also easy to impose the

Virasoro conditions. In the quasi-classical limit , we still can try to impose the Virasoro conditions

as some natural constraints on the quantum states. We will discuss this point latter.

2.2 Quasi-classical limit

In the classical limit the physical mass of the particle

µ
2π
∼ e−

√
λ/2 , (2.13)

whereλ is the physical coupling at the scale 2π, vanishes sinceλ →∞. Moreover we should focus

on quantum states with large quantum numbers, i.e. we shall consider a large numberL→ ∞ of

particles on the ring.

Let us now think of (2.8-2.10) as of the equations for the equilibrium condition for a system

of three kinds of particles: (θα , u j andvk), interacting between themselves and experiencing the

external constant forces (2πmα , 2πnu
j and 2πnv

k). The particles of theθ kind are also placed into

the external confining potential

V(z) = µ cosh(πMz) , z= θ/M (2.14)

where

M ≡− logµ
2π
≃
√

λ
4π

. (2.15)

In the classical limit the potential becomes a square box potential with the infinite walls atz=±2

(see fig.2). Moreover, since this is a large box for the original variables we can use the asymptotics

8
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(2.6) for the force between particles of theθ (or z) type. The box potential provides the appropriate

boundary conditions for the density of particles interacting by the Coulomb force. Since they repeal

each other the density should be peaked aroundz= ±2. To find the correct asymptotics close to

these two points, we can consider eq.(2.8) as the equilibrium condition for the gas of Coulomb

particles in the box.

If the right and left modes (magnons) are not excited we have only the states withU(1) modes.

In the classical limit, using the Coulomb approximation eq.(2.6), we have for this sector the fol-

lowing Bethe equation

µ sinhπMzα −2π m = − 1
M

L

∑
β 6=α

1
zα −zβ

.

In the continuous limit, the equation for the asymptotic density, L∼M→ ∞, is given, through the

resolventGθ (z) = 1
M ∑L

β=1
1

z−zβ
by

/Gθ (z) =−2πm, z∈ Cθ , (2.16)

with inverse square root boundary conditions near±2. The analytical functionGθ (x) having a

real part on the cut defined by eq.(2.16), with support[−2,2], with inverse square root boundary

conditions (the only compatible with the asymptotics atz→ ∞: Gθ (z)→ L
M

1
z, is completely fixed:

Gθ (z) =

(

2πm z+ L
M√

z2−4
−2πm

)

, L > 4π|m|M (2.17)

which gives for the density

ρθ (z) =
1
π

(

2πm z+ L
M√

4−z2

)

. (2.18)

Notice that the distribution has a singular behavior at the endpoints which will be the typical be-

havior even for the general multi-cut solution considered below. Notice also that applying to the

eq.(2.17) the Zhukovsky map

z= x+
1
x

(2.19)

we obtain

Gθ (z(x)) =
L

2M +2πm

x−1
+

L
2M −2πm

x+1
(2.20)

which shows the poles atx=±1, typical for the finite gap solution of the section 1. The Zhukovsky

map will be the central piece of our proof of the identification of the continuous limit of Bethe

ansatz equations with general classical solutions of theσ -model considered in this paper. By this

solution we reproduced from the quantum Bethe ansatz the so called classical BMN vacuum for

the corresponding string theory [2]. Hence we already reproduced the correct classical solution for

his simple state. From the general formula eq.(1.5) (see also eq.(2.23)) the momentum of such a

state is

P = mL, E =
L

4πM
. (2.21)

9
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All this demonstrates that also for the general solution of the Bethe ansatz equations in the

continuum limit we will have the singularities of the type

ρ(z)≡ 1
M

L

∑
α=1

δ (z−zα)≃ 2κ±√
2∓z

, z→±2. (2.22)

with κ± yet to be determined through the energy and momentum for the general case.

We will be considering the scenario where we have the same mode numbermα = m for all

z particles. As proposed in [2, 16] this is the adequate set of states which will obey the Virasoro

constraints in the classical limit.

First, we will relate thezbehavior close to the walls, characterized by the constantsκ± with the

energy and momentumE,P of the quantum state, as given by (2.23,2.2). Then we shall eliminate

the θ ’s from the system of Bethe equations by explicitly solving the first one in the considered

limit. Finally, we will justify why we take the same mode number m for all θ ’s by identifying the

longitudinal modes to the excited mode numbersmi in the Bethe ansatz setup. This constraint on

the states will correspond to the Virasoro conditions, at least in the classical limit.

2.2.1 Energy and momentum

The total momentum can be calculated exactly, before any classical limit8

P =
µ
2π ∑

α
sinh(πθα ) = mpLp−∑

p
npSu

p−∑
p

npSv
p (2.23)

whereLp,Su
p, Sv

p are the filling fractions, or the numbers of Bethe roots with agiven mode numbers

mp,nu,p,nv,p. To prove this, it suffices to sum the eq.(2.8) for all rootsθα . The contribution of

S0(θ) terms cancels due to antisymmetry while the second and thirdsums in the r.h.s. of (2.8) are

replaced using (2.9) and (2.10), respectively.

Let us show how to calculate the energy (2.2) which is a fare less trivial task [2]. As a byprod-

uct we will also reproduce the total momentum from the behavior at the singularities atz = ±2

described by the residuaκ±. We want to compute the sum

E ≡ µ
2π ∑

α
cosh(πθα ) ,

but we cannot simply replace this sum by an integral and use the asymptoticdensityρθ (z) to

compute the energy. That is because the main contribution tothe energy comes from largeθ ’s,

near the walls, where the expression for the asymptotic density is no longer accurate. It is natural

for the classical limit since the particles become effectively massless and the contributions of right

and left modes are clearly distinguishable and located far from θ = 0. We notice that the energy is

8For the closed string theory we should takeP= 0 which gives the level matching condition. Moreover, as we shall

explain latter, we should also pick the same mode number for all particles,mα = m. For the perturbative super SYM

applications one should moreover takeSu
p = 0 [28]. Then we have the well known formula∑p npSv

p = mL (see [1] for

details).

10
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dominated by largeθ ’s where, with exponential precision, we can replace coshπθα by±sinhπθα

for positive (negative)θα . Furthermore, the contribution from theθ ’s in the middle of the box is

also exponentially suppressed sinceµ is very small. Thus we can pick a pointa somewhere in the

box not too close to the walls. One can think ofa as being somewhere in the middle. Then,

E = ∑
zα>a

µ
2π

sinh(πzα M)− ∑
zα<a

µ
2π

sinh(πzαM) ,

where, let us stress, the result iscorrect independently of the point a within the interval−2< a< 2

with the exponential precision. Each sum of sinhπθα can be substituted by the corresponding r.h.s.

of the Bethe equation (2.8), thus giving

E ≃ i
π ∑

zβ <a<zα

logS2
0

(

M
[

zα −zβ
])

+∑
α

msign(zα −a) (2.24)

− 1
2π ∑

j,α
sign(zα −a)i log

Mzα −u j + i/2
Mzα −u j − i/2

− 1
2π ∑

k,α
sign(zα −a)i log

Mzα −vk + i/2
Mzα −vk− i/2

As mentioned above we assume allmα to be the same9. Now we can safely go to the continuous

limit since in the first term the distances betweenz’s are now mostly of the order 110. This allows

to rewrite the energy, with 1/M precision, as follows

E ≃ −M
π

∫ a

−2
dz
∫ 2

a
dw

ρθ (z)ρθ (w)

z−w
− M

2π

∫ ρθ (z)ρu(w)

z−w
sign(z−a)dzdw

− M
2π

∫ ρθ (z)ρv(w)

z−w
sign(z−a)dzdw+mM

∫

ρθ (z)sign(z−a)dz (2.25)

where we are now free to use the asymptotic densityρθ (z). By the use of Bethe equations, we man-

aged to transform the original sum over cosh’s, highly peaked at the walls, into a much smoother

sum where the main contribution is now softly distributed along the bulk and where the continuous

limit does not look suspicious. From the previous discussion we know that this expression does

not depend ona provideda is not too close to the walls. In fact, we can easily see that itdoes not

depend ona at all after taking the continuous limit leading to the perfect box-like potential. To

prove it one notices that due to Bethe equations eq.(2.8) thea-derivative of eq.(2.25) is zero for all

a∈]−2,2[. Hence we can even senda close to a wall:a =−2+ε , whereε is very small. But then

the last three terms in (2.25) are precisely the momentum (2.23), as explained in the beginning of

this section. To compute the first term we can now use the asymptotics (2.6,2.22). The contribution

of this term is then given by

−M
π

∫ −2+ε

−2
dz
∫ 2

−2+ε
dw

ρθ (z)ρθ (w)

z−w
≃−

∫ −2+ε

−2
dz
∫ 2

−2+ε
dw

4Mκ2
−

π(z−w)
√

2+z
√

2+w
≃ 2πMκ2

−

9as we will show it is this choice of states which reproduces the finite gap solution of [1] we mentioned in the first

section. We will come back to this point at a latter stage
10Moreover, it is very important that the contribution fromz’s near the walls±2 is now suppressed since eq.(2.6)

| logS2
0(M(2−zβ ))|> | logS2

0(M(2−a))| ∼ 1/M.

11
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so that

E ≃ 2Mκ2
−π +P. (2.26)

If we compute thea-independent integral (2.25) near the other wall, i.e. fora = 2− ε , we find

E ≃ 2Mκ2
+π−P.

Therefore, equating the results one obtains the desired expressions for the energy and momentum

E±P = 2π M κ2
± (2.27)

through the singularities of the density of rapidities atz = ±2, described byκ±. Together with

(2.15) this is precisely the classical formula (1.5).

2.2.2 Elimination of θ ’s and AFS equations

It is useful for what follows, to introduce some new notations. Using the Zhukovsky map

z= x(z)+
1

x(z)
, |x(z)| > 1 (2.28)

we define

y±j ≡ x

(

u j ± i/2
M

)

, y j ≡ x
(u j

M

)

with the similar expressions forvl given byỹ±l andỹl .

In this section, for the purposes of comparison with the asymptotic AFS Bethe ansatz for the

N=4 SYM theory, let drop thev magnons,Jv = 0. Their contributions will be easily restored later.

As explained at the beginning of this section we can write thefirst Bethe equation, (2.8) as

−
∫ 2

−2

ρ(w)

z−w
dw=−

Ju

∑
j

i log
Mz−u j + i/2
Mz−u j − i/2

−2πm, z∈ [−2,2] .

The solution to this Riemann-Hilbert problem with the boundary conditions and the normalization

given by (2.22) looks as follows [3]

ρ(z) =
1

π
√

4−z2

[(

2πm+ i
Ju

∑
j=1

log
y−j
y+

j

)

z+
L
M

+2i
Ju

∑
j=1

(

1

y+
j

− 1

y−j

)]

− 1
π

Ju

∑
j=1

log

(

x(z)y+
j −1

x(z)y−j −1

x(z)−y−j
x(z)−y+

j

)

. (2.29)

We want to focus on such states that the momentumP related to the asymptotics close to the walls

by (2.27), vanishes. Thus we should set to zero the first term in the r.h.s. of eq.(2.29):

P = m− i
2π

Ju

∑
j=1

log
y+

j

y−j
= 0. (2.30)

12
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Then, plugging this density into (2.9), integrating over the rapidities and exponentiating the result,

we find [3]
(

y+
k

y−k

)L

=
Ju

∏
j 6=k

uk−u j + i

uk−u j − i
σ2(u j ,uk) , (2.31)

where the “dressing" factorσ2 is given by

σ2(u j ,uk) =

(

1−1/(y−j y+
k )

1−1/(y+
j y−k )

)−2(
y−j y−k −1

y−j y+
k −1

y+
j y+

k −1

y+
j y−k −1

)2i(uj−uk)

. (2.32)

These are precisely the AFS equations conjectured in [19] asthe asymptotic Bethe ansatz equation

for theSU(2) sector ofN = 4 SYM theory11. The dispersion relation for these dressed magnons

can be read off from the asympotics of the density eq.(2.29) close to the walls12

∆≡
√

λ κ = L+2Mi
Ju

∑
j=1

(

1

y+
j

− 1

y−j

)

. (2.33)

2.2.3 Classical limit and KMMZ algebraic curve

To consider the classical limit we trivially restore thev roots from the previous calculation, to

find
(

y+
k

y−k

)L

=
Ju

∏
j 6=k

uk−u j + i
uk−u j − i

σ2(u j ,uk)
Jv

∏
l=1

σ2(vl ,uk) , (2.34)

and similarly forỹk, and consider the limit whereJu,Jv,L ∼M, so that theu andv roots also scale

asM. Then the expansion of this equation, after taking the log’s, gives to the leading order in 1/M

πnk =
L

2M yk +2πm

1−y2
k

+
1

y2
k−1

1
M

Jv

∑
l=1

1
1/yk− ỹl

+
y2

k

y2
k−1

1
M

Ju

∑
j 6=k

1
yk−y j

. (2.35)

Finally we can define the quasimomentum [3]

p(x) =
L

2M x+2πm

1−x2 +
1

x2−1
1
M

Jv

∑
j=1

1
1/x− ỹ j

+
x2

x2−1
1
M

Ju

∑
j=1

1
x−y j

. (2.36)

Let us explain how it becomes precisely the quasimomentum wehad in the context of the alge-

braic curve in section 1.2 in the classical theory. It is clear that we indeed have the asymptotics

(1.10,1.11) close tox = 0,∞. Then, to relate the residues of eq.(2.36) to the ones found from the

algebraic curve in eq.(1.9), we expand (2.33) in our limit asfollows:

∆ = L+∑
j

2

y2
j −1

+∑
l

2

ỹ2
l −1

(2.37)

and check that this is indeed what one finds from the quasimomenta we just defined. Finally, when

we consider a large number of magnonsJu,Jv the roots in eq.(2.36) condense into a number of one

dimensional supports, the sums becoming the integrals along these lines giving the same square

root cuts as we had in the finite gap construction.
11A similar derivation of the BDS equation in N=4 SYM theory wasgiven in [29] starting from the Hubbard model
12In the context of the AdS/CFT correspondenceκ = κ− = κ+ is the energy with respect to the AdS global timeY

equal to the dimension of the corresponding SYM operator, see (1.4).

13



P
o
S
(
S
o
l
v
a
y
)
0
0
5

Classical limit of Quantum Sigma-Models from Bethe Ansatz Vladimir Kazakov

2.2.4 Geometric proof

The roots solving (2.8,2.9,2.10) with the same mode number will condense into a single square

root cut. When we consider more than one type of mode numbers we see that the particles condense

into a few distinct supports, one for each distinct mode number

C = C1∪ ·· ·∪CK .

We can now rescale the Bethe roots

(u,v,θ) = M(x,y,z) (2.38)

and define

p1 =−p2 =
1
M

Ju

∑
i=1

1
z−xi

− 1
2M

L

∑
β=1

1
z−zβ

p3 =−p4 =
1
M

Jv

∑
l=1

1
z−yl

− 1
2M

L

∑
β=1

1
z−zβ

. (2.39)

Then we can recast the Bethe equations in this scaling limit as follows

x∈Cu, p1
+− p2

− = 2πnu

x∈Cθ , p2
+− p3

− = 2πm (2.40)

x∈Cv, p3
+− p4

− = 2πnv

x∈Cθ , p4
+− p1

− = 2πm,

where we

• considered, as in the preceding section, one single mode numberm for all rapidities;

• dropped the momentumµ sinhθ . As we explained in section 2.2 we can do this provided we

replace it by the boundary conditions (2.22).

These equations tell us thatp′1(z), p′2(z), p′3(z), p′4(z) form four sheets of the Riemann surface of an

analytical functionp′(z) (see fig.3).

They can also be written as holomorphic integrals around theinfinite B-cycles:
∮

Bu
j

dp = 2πnu, j n j = 1, . . . ,Ku

∮

Bv
j

dp = 2πnv, j n j = 1, . . . ,Kv (2.41)

∮

Bθ
dp = 2πm

where the the first two conditions correspond to the equations in the first and third line of (2.40),

respectively, while the last one corresponds to any of the equations of the second and fourth lines

of (2.40). TheB cycles are defined as in fig.3.
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Figure 3: Structure of the curve coming from the Bethe ansatz side. Thequasi momentap1,2,3,4(z) are

defined in (2.39). This figure is related with fig.1 by means of the Zhukovsky map.

We found two Riemann surfaces which we plotted in figures 1 and3. The equivalence between

these two curves is achieved through the Zhukovsky map [2]

z= x+
1
x

and amounts to the equivalence between the finite gap solutions for the classical theory and the

Bethe ansatz solutions in the scaling limit.

2.2.5 Virasoro modes

We established the equivalence between

• all classical solutions following from the PCF action (1.1)and subject to the Virasoro condi-

tions tr( jτ ± jσ )2 =−2κ2
± as described by the construction of the algebraic curve of section

1.2.

• and the Bethe ansatz quantum solution (2.8-2.9) in the scaling limit (2.38) with all rapidities

θα having the same mode numberm.

In the context of string theory one is interested in quantizing the Polyakov string action

S=

√
λ

8π

∫

dσdτ
√

hhab(tr∂ag†∂bg−∂aY∂bY
)

. (2.42)

Due to its local reparametrization and Weyl symmetries one can then fix the target space timeY as

in (1.4) and reduce the action to (1.1). However, due to the residual reparametrization symmetry

τ±σ → f±(τ±σ) , (2.43)

one must keep in mind that the original presence of the world-sheet metric field imposes that the

stress energy tensor vanishes. This is precisely the Virasoro conditions.
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On the other hand, from the field theory point of view the Betheansatz equations (2.8-2.10)

should describe all possible states of the theory, not only those for which

〈ψ |Tab|φ〉= 0. (2.44)

Thus, in view of the equivalence we proved, we are lead to the conclusion that if we start

with some classical solution with oneθ cut and someu andv cuts, the excitation of additional

microscopicθ cuts should correspond to the inclusion of the longitudinalmodes which we drop in

the context of string theory. Indeed, these massless (from the world-sheet point of view) excitations

coming from our conformal gauge choice, appear if one expands the action around the classical

solution without fixing the Virasoro conditions from the beginning (see for instance expression 2.7

and the discussion following it in [30]). In this section we verify this claim therefore justifying this

singleθ cut restriction, first proposed in [16] and given the interpretation as the Virasoro condition

in [2].

In (2.24) we computed the energy of a quantum state where all mode numbersmα were the

same. If we change the mode numbers of a fewθ ’s we will have a macroscopic support with

particles having the mode numberm surrounded by some microscopic domains, linear supports,

with mode numbersmi < m (to the left of it) andmj > m (to its right).

Let us assume that we excite them one at a time and focus on the first particle whose mode

number we change. Before we do it, it is in equilibrium due to the exponential force exerted by

the wall of the box (2.14) and by (an equal) force produced by all the other particles and by the

constant force 2πm – see (2.8). When we change the particle mode number the constant force

increases pushing the particle against the wall. However since the forces are exponential the shift

will be very small, much smaller than 1/M - the characteristic distance between the neighboring

rapidities. Then let us consider the particles in the middleof the box, the ones whose position is

well described by the asymptotic densityρ(z). They only feel the change in mode number through

the new position of the correspondingθ particle. Since this shift is very small the asymptotic

density, to the order we are interested, is not changed. Thus, in this procedure of changing a few

mode numbers we conclude that, when going to the continuous limit in (2.24) only the second term

will lead to a different result so that

δE = ∑
n
|n|Sm+n (2.45)

whereSm+n is the number of particles with mode numberm+ n. We found in this way the mass-

less (world-sheet) modes associated with the local reparametrization symmetry of the world-sheet.

These modes appear when considering the fluctuations arounda classical solution [30] and are the

only ones not taken into account by the finite gap algebraic curve [20].
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