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Department of Physics and Astronomy, State University of New York at Stony Brook, Stony
Brook, NY 11794-3800, USA
E-mail: ipatu@grad.physics.sunysb.edu

Our understanding of Bethe Anstaz has improved a lot over the last 75 years. This was clear
from the many excellent lectures on the conference. But there are still unanswered questions and
actually this lecture will concentrate on three open problems. Two of the problems are related to
the correlations functions of the XXX spin chain and the XXZ spin chain and one to the entropy
of subsystems.

Bethe Ansatz: 75 years later
October 19-21 2006,
Brussels, Belgium

∗Speaker.
†Permanent address Institute of Space Sciences MG 23, 077125 Bucharest-Magurele, Romania

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:korepin@max2.physics.sunysb.edu
mailto:ipatu@grad.physics.sunysb.edu


P
o
S
(
S
o
l
v
a
y
)
0
0
6

XXX Spin Chain: from Bethe Solution to Open Problems Vladimir E. Korepin

1. Introduction

Originally introduced in 1931 by Hans Bethe in order to solve the isotropic Heisenberg spin
chain, the Bethe Ansatz, with its numerous generalizations and refinements has been proven an
invaluable tool in the field of exactly solved models. The versatility of this method is exemplified
by the multitude of physical models and problems in which it proved useful. Some of these are: δ -
function Bose gas, massive Thirring model, Hubbard model, XXX, XXZ and the XYZ spin chains,
six-vertex and eight-vertex models and the list could go on.

Even though our understanding of exactly solved models has improved a lot there is still a
large number of unsolved problems. The purpose of this lecture is to present some of them.

2. The Heisenberg Spin Chain and Number Theory

Our first open problem is related to the model that was the starting point for the Bethe Ansatz.
Consider the antiferromagnetic spin 1/2 Heisenberg XXX spin chain with the hamiltonian

HXXX =
∞

∑
j=−∞

(
σ

x
j σ

x
j+1 +σ

y
j σ

y
j+1 +σ

z
j σ

z
j+1

)
(2.1)

where σ x
i ,σ y

i ,σ z
i are the Pauli matrices and we will denote σ0 the 2×2 unit matrix

σ
x =

(
0 1
1 0

)
σ

y =

(
0 −i
i 0

)
σ

z =

(
1 0
0 −1

)
σ

0 =

(
1 0
0 1

)
As we have said this hamiltonian was diagonalized in 1931 by means of what today we call

coordinate Bethe Ansatz [1]. The unique antiferromagnetic ground state in the thermodynamic
limit was investigated by Hulthen in 1938 [2] and the spectrum of excitations which consists of
magnons of spin 1/2 was correctly described for the first time by Faddeev and Takhtajan [3].

2.1 Correlation Functions

The correlation functions of the XXX spin chain are defined as follows: consider n sequential
lattice sites and in each site pick up σ

ak
k ∈ {σ0

k ,σ x
k ,σ y

k ,σ z
k}. The average of this operator with

respect to the ground state |GS〉

〈
n

∏
k=1

σ
ak
k 〉= 〈GS|

n

∏
k=1

σ
ak
k |GS〉 (2.2)

is called a correlation function. An example is emptiness formation probability which is defined as

P(n) = 〈GS|
n

∏
j=1

Pj|GS〉 (2.3)

where Pj = (σ z
j +1)/2 is the projector on the state with the spin up in the j-th lattice site. P(n) is

the probability of formation of a ferromagnetic string of length n in the antiferromagnetic ground
state.

We will show that there is a strong connection between the correlation functions of the XXX
spin chain and Riemann zeta function at odd arguments, but first we need to introduce some pre-
liminary notions.
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2.2 Number Theory and Riemann Zeta Function with Odd Arguments

The roots of all the polynomials with rational coefficients

rnxn + rn−1xn−1 + . . .r1x+ r0 = 0, ri ∈ Q

(where we denote by Q the field of rational numbers ) are called algebraic numbers. The transcen-
dental numbers are not roots of any polynomials with rational coefficients (i.e. ln2,π,e). We say
that x,y are algebraically dependent if

rnmxnym +
n−1

∑
a=0

m−1

∑
b=0

rabxayb = 0, ri j ∈ Q

and algebraically independent if

rnmxnym +
n−1

∑
a=0

m−1

∑
b=0

rabxayb 6= 0, ri j ∈ Q

Also we say that t1, . . . , tk are algebraically independent transcendental numbers

∑
{a j}

ra1...akt
a1
1 ta2

2 . . . tak
k 6= 0, a j = integers, ra1...ak ∈ Q

The Riemann zeta function is defined as [4]

ζ (s) =
∞

∑
n=1

1
ns ℜ(s) > 1 (2.4)

and it can also be represented as a product with respect to all the prime numbers p (Euler’s product)

ζ (s) = ∏
p

1
1− p−s (2.5)

For the characterization of the correlation functions it will also be useful to use the alternating zeta
series (the value of the polylogarithm at root of unity)

ζa(s) = ∑
n>0

(−1)n−1

ns = −Lis(−1) (2.6)

where Lis(x) is the polylogarithm. The connection between the Riemann zeta function and the
alternating zeta series is

ζ (s) =
1

1−21−s ζa(s) (2.7)

where s 6= 1. Unlike the Riemann zeta function which has a pole at s = 1 the alternating zeta
function has a limit when s → 1.

ζa(1) = ln2 (2.8)

It is known that at even values of the argument the zeta function can be expressed in terms
of powers of π but at odd arguments the situation is more complicated. R. Apery proved first that
ζ (3) is irrational [5] and T. Rivoal showed that the zeta function at odd arguments takes an infinite
number of irrational values [6] (see also [7]). In fact it was conjectured that the values of the zeta
function at odd arguments are all irrational even algebraically independent transcendent numbers
(Don Zagier [8], P. Cartier [9]).

3



P
o
S
(
S
o
l
v
a
y
)
0
0
6

XXX Spin Chain: from Bethe Solution to Open Problems Vladimir E. Korepin

2.3 Quantum Correlations and Number Theory

In 2001 H.Boos and one of the authors were able to calculate exactly the emptiness formation
probability P(n) for small strings (n = 1, . . . ,4) obtaining the following results

P(1) =
1
2

= 0.5,

P(2) =
1
3
− 1

3
ln2

P(3) =
1
4
− ln2+

3
8

ζ (3) = 0.007624158,

P(4) =
1
5
−2ln2+

173
60

ζ (3)− 11
6

ln2 ·ζ (3)− 51
80

ζ
2(3)

−55
24

ζ (5)+
85
24

ln2 ·ζ (5) = 0.000206270.

P(1) is obvious from symmetry and P(2) can be obtained from the result of Hulthen [2] for
the ground state energy. P(3) can be obtained from Takahashi’s result [10] for the nearest neighbor
correlation (see also [11]) and P(4) was obtained from from the integral representation derived in
[12] based on the vertex operator approach [52]. Subsequent computations of P(5) in [15] and P(6)
in [14] showed that the emptiness formation probability for small strings share the same structure.
This led to the following conjecture

Conjecture. 1. (Boos, Korepin 2001) Any correlation function of the XXX spin chain can be repre-
sented as a polynomial in ln2 and values of Riemann zeta function at odd arguments with rational
coefficients [13],[14].

The conjecture was sustained also by computations of different correlation functions such as
two-point spin-spin correlators some examples being listed bellow〈

Sz
jS

z
j+1

〉
=

1
12

− 1
3

ζa(1) =−0.147715726853315〈
Sz

jS
z
j+2

〉
=

1
12

− 4
3

ζa(1)+ζa(3)

= 0.060679769956435〈
Sz

jS
z
j+4

〉
=

1
12

− 16
3

ζa(1)+
290
9

ζa(3)−72ζa(1)ζa(3)

−1172
9

ζa(3)2− 700
9

ζa(5)

+
4640

9
ζa(1)ζa(5)− 220

9
ζa(3)ζa(5)− 400

3
ζa(5)2

+
455
9

ζa(7)− 3920
9

ζa(1)ζa(7)+280ζa(3)ζa(7)

= 0.034652776982728

Again the nearest neighbor correlator was obtained from Hulthen result [2] and the second-
neighbor correlator was obtained by Takahashi in 1977 [10] using the strong coupling expansion
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of the ground state energy of the half-filled Hubbard chain. The next nearest correlators were
calculated in [16],[17].

The conjecture was finally proved in 2006 by H. Boos, M. Jimbo, T. Miwa, F. Smirnov and
Y. Takeyama [18]. However we still not have explicit expressions for the rational coefficients
that enter in the expression for the correlation functions as polynomials in ln 2 and Riemann zeta
function at odd arguments. Such a description will provide a tractable formula for the correlations
of the XXX spin chain.

Open problem: Efficient description of the rational coefficients which appear in the ex-
pression for the correlation functions of the XXX spin chain as a polynomial in alternating
zeta series at odd arguments.

3. Entropy of Subsystems

We are interested in the following physical situation. Consider a one-dimensional system of
interacting spins (we can also consider particles interacting) in the ground-state denoted by |GS〉.
We will treat the whole ground state as a binary system A and B where A is a block of neighboring
spins and B is the rest of the spins in the ground state. The density matrix of the entire system is

ρA&B = |GS〉〈GS| (3.1)

and the density matrix of the subsystem A obtained by tracing away the B degrees of freedom is

ρA = TrB(ρA&B) (3.2)

In a seminal paper [19] Bennet, Bernstein, Popescu and Schumacher discovered that the von Neu-
mann entropy of a subsystem A

S(ρA) =−Tr(ρA lnρA) (3.3)

is a measure of entanglement. Entanglement is the fundamental resource used in quantum com-
putation and quantum information. A better understanding of entanglement will provide further
insight in the theory of quantum phase transitions but also in the physics of strongly correlated
quantum systems where deeply entangled ground-states play a major role in the understanding
of these quantum collective phenomena. Consequently a large amount of effort was invested in
studying the entropy of subsystems in a large class of quantum systems.

3.1 General results

If we consider the doubling scaling limit in which the size of the block of spins is much larger
than one but much smaller than the length of the entire chain we can present some general results
about the behavior of the entropy of subsystems.

In the case of 1D critical models (gap-less) the entropy of the subsystems scales logarithmi-
cally with the size of the block. More precisely for a block of n spins we have

S(n) =
c
3

lnn n → ∞ (3.4)

where c is the central charge of the associated conformal field theory that describes the critical
model. This formula was first derived for the geometrical entropy (the analogous of (3.3) for
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conformal field theory) by Holzhey, Larsen and Wilczek in [20] (see also [21],[22],[28]). Some
examples are: Hubbard model , XX0 (or isotropic XY) spin chain, higher spin generalization of
the isotropic XXX antiferromagnetic spin chain, Bose gas with δ interaction etc.

In the case of non-critical models (gap-full) it was conjectured in [21] (based on numerical
evidence for some spin chains) that the entropy of subsystems will increase with the size of the
subsytem until it will reach a limiting value S(∞). This was proved for the XY spin chain in
[30],[31] where the limiting value was analytical computed and also checked for the spin chain
introduced by Affleck, Kennedy, Lieb, Tasaki ([23] AKLT model) in [24] where it was showed that
S(∞) = 2. This explains why the Density Matrix Renormalization Group [25](DMRG) technique
works so well for the AKLT model and fails to reproduce quantum critical behavior. It was noted
in [21] that in order for the DMRG technique to work we need to have for the S(ρA) a limiting
value as the size of the subsystem increases (this is equivalent with a bounded rank for ρA) and as
we have shown this is not the case in critical models.

3.2 An example: the XY spin chain

We can make all these general considerations more exact by presenting the results for the XY
spin chain in magnetic field with the hamiltonian

HXY =−
∞

∑
j=−∞

(
(1+ γ)σ x

j σ
x
j+1 +(1− γ)σ y

j σ
y
j+1 +hσ

z
j

)
where 0 < γ < 1 is the anisotropy parameter an h is the magnetic field. The model was solved by
E.H. Lieb, T. Schulz and D. Mattis in zero magnetic field case [32] and by E. Barouch and B.M.
McCoy in the presence of a constant magnetic field [26]. The ground state is unique and in general
there is a gap in the spectrum.

The density matrix of a block of n neighboring spins in the ground state can be expressed as

ρ(n) =
1
2n ∑

{a j}
j=1..n

(
n

∏
j=1

σ
ai
j

)
< GS|

n

∏
k=1

σ
ak
k |GS >

and the limiting value of the entropy in the double scaling limit depends on the isotropy and mag-
netic field. We can distinguish three cases:

• Case Ia: moderate magnetic field 2
√

1− γ2 < h < 2

• Case Ib: weak magnetic field including zero magnetic field 0 ≤ h < 2
√

1− γ2

• Case II: strong magnetic field h > 2

The result for these regions obtained in [30] (we denote by S(∞) the limiting value of S(ρ(n)) when
n → ∞) is

S(∞) =
π

2

∫
∞

0
ln
(

θ3(ix+ στ

2 )θ3(ix− στ

2 )
θ 2

3 (στ

2 )

)
dx

sinh2(πx)

where the modulus k of the theta function is different in the three regions; τ = I(k′)/I(k) where
I(k) is the complete elliptic integral of modulus k, k′ =

√
1− k2 is the complementary modulus

6
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and σ = 1 in Case I and σ = 0 in Case II. Using the approach of [28] I. Peschel independently
calculated and simplified the results in region (Ia) and (II) obtaining

S(∞) =
1
6

[
ln
(

k2

16k′

)
+
(

1− k2

2

)
4I(k)I(k′)

π

]
+ ln2 with k =

√
(h/2)2 + γ2−1

γ
(Ia)

S(∞) =
1
12

[
ln

16
k2k′2

+(k2− k′2)
4I(k)I(k′)

π

]
with k =

γ√
(h/2)2 + γ2−1

(II)

and the simplified result for the region (Ib) was finally obtained in [30]

S(∞) =
1
6

[
ln
(

k2

16k′

)
+
(

1− k2

2

)
4I(k)I(k′)

π

]
+ ln2 with k =

√
1− γ2− (h/2)2√

1− (h/2)2
(Ib)

In the isotropic case γ = 0 the ground-state is again unique but now the model is critical for
h < 2. We expect that the entropy will scale logarithmically and indeed it was showed in [27] that

S(ρ(n)) =
1
3

ln(n
√

4−h2)−
∫

∞

0
dt
{

e−3t

3t
+

1
t sinh2(t/2)

− cosh t/2
2sinh3(t/2)

}
We see that the result of applying the magnetic field is very simple effectively reducing the size
of the subsystem. If the magnetic field is larger than the critical value 2 then the ground-state is
ferromagnetic and the entropy is zero.

3.3 The XXZ spin chain

It will be highly desirable if we would be able to obtain the same amount of information about
the XXZ spin chain with the hamiltonian

HXXZ =−
∞

∑
j=−∞

(
σ

x
j σ

x
j+1 +σ

y
j σ

y
j+1 +∆σ

z
i σ

z
j+1

)
If ∆ > 1 the ground-state is ferromagnetic so S(ρ(n)) = 0 and in the critical region (−1 ≤ ∆ <

1) the entropy will scale logarithmically (see 3.4). In the gapped antiferromagnetic case (∆ < −1)
we expect that S(ρ(n)) will tend to a limiting value S(∞) but at this moment the analytic evaluation
of this constant is missing.

Open problem: For the XXZ spin chain in the antiferromagnetic region (∆ <−1) calcu-
late the limiting value of the entropy of a subsystem when the number of spins in the block is
large.

4. Asymptotics of Time and Temperature Dependent Correlation Functions

The last open problem that are we going to present is related to the asymptotic behavior of
correlations functions when the space and time separation is large. As in the previous section we
are going to present two examples for which we have satisfactory results and which we believe are
going to facilitate the understanding of the problem at hand.

Consider the isotropic XY model [32] in transverse magnetic field with the hamiltonian

HXY =−
∞

∑
j=−∞

(
σ

x
j σ

x
j+1 +σ

y
j σ

y
j+1 +hσ

z
j

)
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where σ are Pauli matrices and h is the magnetic field. We are interested in the asymptotic behavior
of the time and temperature correlation function

g(n, t) =
Tr
{(

e−HXY /T
)

σ+
n2

(t2)σ−
n1

(t1)
}

Tr
(
e−HXY /T

) (4.1)

when n = n2 −n1 and t = t2 − t1 are large and h ∈ [0,2). In [35] it was showed that g(n, t) decays
exponentially but the rate of decay depends on the direction φ defined as cotφ = n/4t when n, t →
∞. The asymptotics in the space-like and time-like regions are:

• Space-like directions 0 ≤ φ < π/4

g(n, t)→C exp
{

n
2π

∫
π

−π

d p ln
∣∣∣∣tanh

[
h−2cos p

T

]∣∣∣∣} (4.2)

• Time-like directions π/4 < φ ≤ π/2

g(n, t)→Ct(2ν2
++2ν2

−) exp
{

1
2π

∫
π

−π

d p |n−4t sin p| ln
∣∣∣∣tanh

[
h−2cos p

T

]∣∣∣∣} (4.3)

with

ν+ =
1

2π

∣∣∣∣tanh
(

h−2cos p0

T

)∣∣∣∣ ν− =
1

2π

∣∣∣∣tanh
(

h+2cos p0

T

)∣∣∣∣ n
4t

= sin p0

At zero temperature the asymptotics of the correlation functions were evaluated in [33] and
[34] and for φ = π/2 the leading factor was computed in [37].

Similar formulae were also obtained for the δ -function Bose gas (N bosons interacting via a
repulsive δ -function potential of strength c) which is characterized by the hamiltonian

HN =−
N

∑
j=1

∂ 2

∂x2
j
+2c ∑

N≥ j>k≥1
δ (x j − xk) (4.4)

In this case the asymptotic formula (x, t → ∞) obtained in [36] using the determinant approach to
quantum correlation functions [53] is

〈ψ(0,0)ψ†(x, t)〉T −→ exp
{

1
2π

∫
∞

−∞

dλ

2πρt(λ )
|x− v(λ )t| ln

∣∣∣∣tanh
(

ε(λ )
2T

)∣∣∣∣} (4.5)

where ε(λ ),ρt(λ ) and v(λ ) are the finite temperature dressed energy, pseudoparticle density and
Fermi velocity.

4.1 The XXZ Spin Chain

In the last years remarkable progress was made in obtaining multiple integral representation
for the correlation functions of the XXZ spin chain. We remind the hamiltonian

HXXZ =−
∞

∑
j=−∞

(
σ

x
j σ

x
j+1 +σ

y
j σ

y
j+1 +∆σ

z
i σ

z
j+1 +hσ

z
j

)
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where ∆ is the anisotropy and h the magnetic field. Using the q-vertex operator approach and corner
transfer matrices, Jimbo, Miki, Miwa and Nakayashiki obtained in 1992 [38] multiple integral
representation for the correlation functions in the massive regime (∆ < −1), and a conjecture for
the critical regime (|∆|< 1) was proposed in [39]. The next important steps were made by Kitanine,
Maillet, Terras and later Slavnov when they proved the previous results and their extension in the
case of a magnetic field in both regimes in 1999 [40, 41]. Their method used the algebraic Bethe
Ansatz [53]. Later they were able to obtain representations for the two-point correlations in terms of
a multiple integral [42] which they called master equation. The generalization of the method for the
time-dependent correlations was made in [43]( see [44] for a review of the entire series of papers).
The final step was the extension of the multiple integral representation for finite temperatures which
was done by Göhmann, Klümper, Seel and Hasenclever in [45, 46]. It should also be mentioned
that in the study of the correlation functions in integrable models an important role is played by
the quantum Knizhnik-Zamolodchikov equation [48] (see also [49],[51]) and for supersymmetric
fermion models determinant representation of the correlations functions were reviewed in [47].

Despite these considerable efforts the asymptotics of time and temperature dependent correla-
tion functions, such as g(n, t) (see 4.1) for the XXZ spin chain, are still out of our reach. We expect
that they will decay exponentially like in the previous examples of the isotropic XY spin chain or
the δ -function Bose gas but at this moment we do not have such a result.

Open problem: Derive an explicit analytic formula describing the asymptotic exponen-
tial decay of time and temperature correlation functions in the critical region (−1≤ ∆ < 1) of
the XXZ spin chain.

5. Conclusions

Of course the open problems that we have presented do not exhaust the list of unanswered
questions in the field of exactly solvable models. We should mention for example the solving of
the time-dependent Schrödinger equation for spin chains which plays an important role in quantum
information theory [50]. In the light of the talks given at the conference we can definitely say
that Bethe Ansatz is alive and well after 75 years of developments and will carry on into the 21st
century.

References

[1] H. Bethe, Zur Theorie der Metalle, Zeitschrift fur Physik 71 (1931) 205

[2] L. Hulthen, Über has Austauschproblem eines Kristalls, Ark. Mat. Astron. Fysik A26 (1939) 1

[3] L.Faddeev and L. Takhtajan, Spectrum and scattering of excitations in the one dimensional isotropic
Heisenberg model, J. Sov. Math. 24 (1984) 241

[4] B. Riemann, Uber die Anzahl der Primzahlen unter einer gegebenen Grosse, Monat. der Koenigl.
Preuss. Akad. der Wissen. zu Berlin aus dem Jahre 1859 (1860) 671

[5] R. Apery, Irrationalite de ζ (2) et ζ (3), Asterisque 61 (1979) 11

[6] T. Rivoal, La fonction Zeta de Riemann prend une infinite de valeurs irrationnelles aux entiers
impairs, C.R. Acad. Sci. Paris Serie I Math. 331 (2000) 267; Irrationalite d’au moins un des neuf

9



P
o
S
(
S
o
l
v
a
y
)
0
0
6

XXX Spin Chain: from Bethe Solution to Open Problems Vladimir E. Korepin

nombres ζ (5),ζ (7), . . . ,ζ (21), Acta Arith. 103.2 (2002) 157
[math.NT/0104221],[math.NT/0008051]

[7] W. Zudilin, One of the numbers ζ (5),ζ (7),ζ (9),ζ (11) is irrational, Uspekhi Mat. Nauk 56:4
(2001) 149

[8] Don Zagier, Values of Zeta Functions and their applications , First European Congress of
Mathematics, Vol. II (Paris 1992); Prog.Math., Birkhauser, Basel-Boston 1994

[9] P. Cartier, Fonctions polylogarithmes, nombres polyzetas et groupes pro-unipotents Asterisque 282
(2002) 137

[10] M. Takahashi, Half-filled Hubbard-model at low-temperature, J.Phys. C-Solid State Physics 10
(1977) 1289

[11] J. Dittrich and V.I. Inozemtzev, On the second-neighbour correlator in 1D XXX quantum
antiferromagnetic spin chain, J. Phys. A 30 (1997) L623

[12] V.E. Korepin, A.G. Izergin, F.H.L. Essler, D.B. Uglov, Correlation Function of the Spin-1/2 XXX
Antiferromagnet, Phys.Lett. A190 (1994) 182 [cond-mat/9403066]

[13] H. Boos and V. Korepin, Quantum spin chains and Riemann zeta functions with odd arguments, J.
Phys. A 34 (2001) 5311 [hep-th/0104008]

[14] H. Boos and V. Korepin and F. Smirnov, Emptiness formation probability and quantum
Knizhnik-Zamolodchikov equation, Nucl. Phys. B658 (2003) 417 [hep-th/0209246]

[15] H.E. Boos, V.E. Korepin, Y. Nishiyama and M. Shiroishi, Quantum correlations and number theory,
J.Phys. A 35 (2002) 4443 [cond-mat/0202346]

[16] K. Sakai, M. Shiroishi, Y. Nishiyama, M. Takahashi, Third Neighbor Correlators of Spin-1/2
Heisenberg Antiferromagnet, Phys.Rev. E67 (2003) 065101 [cond-mat/0302564]

[17] H.E. Boos, M. Shiroishi, M. Takahashi, First principle approach to correlation functions of spin-1/2
Heisenberg chain : fourth-neighbor correlators, Nucl.Phys. B712 (2005) 573 [hep-th/0410039]

[18] H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama, Density matrix of a finite sub-chain of the
Heisenberg anti-ferromagnet, Lett. Math. Phys. 75 (2006) 201 [hep-th/0506171]

[19] C.H. Bennet, H.J. Bernstein, S. Popescu and B. Schumacher, Concentrating partial entanglement by
local operations, Phys. Rev. A53 (1996) 2046

[20] C.Holzhey, F.Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field-theory,
Nucl. Phys. B424 (1994) 443

[21] G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena, Phys.
Rev. Lett. 90 (2003) Art. No. 227902 [quant-ph/0211074]

[22] V.E. Korepin, Universality of entropy scaling in 1D gap-less models, Phys. Rev. Lett. 92 (2004) Art.
No. 062314 [cond-mat/0311056]

[23] A. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Valence bond ground-states in isotropic quantum
antiferromagnets, Comm. Math. Phys. 115 (1988) 477

[24] H. Fan, V.E. Korepin and Vwani Roychowdhury, Entanglement in a Valence-Bond-Solid state, Phys.
Rev. Lett. 93 (2004) Art. No. 227203 [quant-ph/0406067]

[25] S.R. White, Density-matrix algorithms for quantum renormalization-groups, Phys. Rev. B48 (1993)
10345

10



P
o
S
(
S
o
l
v
a
y
)
0
0
6

XXX Spin Chain: from Bethe Solution to Open Problems Vladimir E. Korepin

[26] E. Barouch and B.M. McCoy, Statistical mechanics of the XY model .2. Spin correlation functions ,
Phys. Rev. A3 (1971) 786

[27] B.Q. Jin, V.E. Korepin, Quantum spin chain, Toeplitz determinants and the Fisher-Hartwig
conjecture, J. Stat. Phys. 116 (2004) 79

[28] P. Calabrese, J. Cardy, Entanglement Entropy and Quantum Field Theory, J.Stat.Mech. P002
(2004),[hep-th/0405152]

[29] I. Peschel, On the entanglement entropy for an XY spin chain, J. Stat. Mech. P12005 (2004)
[cond-mat/0410416]

[30] A.R. Its, B.-Q. Jin, V.E. Korepin, Entanglement in the XY spin chain, J. Phys. A 38 (2005) 2975
[quant-ph/0409027]

[31] A.R. Its, B.-Q. Jin, V.E. Korepin, Entropy of XY Spin Chain and Block Toeplitz Determinants,
[quant-ph/0606178]

[32] E. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Ann. Phys. 16
407 (1961)

[33] B.M. McCoy, J.H.H. Perk and R.E. Shrock, Correlation-functions of the transverse Ising chain at the
critical-field for large temporal and spatial separations, Nucl. Phys. B220 269 (1983);
Time-dependent correlation-functions of the transverse Ising chain at the critical magnetic field,
Nucl. Phys. B220 35 (1983)

[34] H.G. Vaidya and C.A. Tracy, Crossover scaling function for one dimensional XY model at zero
temperature, Phys. Lett. A68 378 (1978)

[35] A.R. Its, A.G. Izergin, V.E. Korepin and N.A. Slavnov, Temperature Correlations of Quantum Spins,
Phys.Rev.Lett. 70 (1993), 1704-1708; Erratum-ibid. 70 (1993) 2357 [hep-th/9212135]

[36] V.E. Korepin, N. Slavnov, Time and temperature dependent, correlation functions of 1D models of
quantum statistical mechanics, Phys. Lett. A236 201 (1997)

[37] P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert Problems, Bull. Amer.
Math. Soc. 26 (1992) 119

[38] M. Jimbo, K. Miki, T. Miwa and A. Nakayashiki, Correlation-functions of the XXZ model for ∆ <−1,
Phys. Lett. A168 256 (1992)

[39] M. Jimbo and T. Miwa, Quantum KZ equation with |q|= 1 and correlation functions of the XXZ
model in the gapless regime, J. Phys. A 29 2923 (1996)

[40] N. Kitanine, J.M. Maillet and V. Terras, Form factors of the XXZ Heisenberg spin-1/2 finite chain,
Nucl. Phys. B554 (1999) 647 [math-ph/9807020]

[41] N. Kitanine, J.M. Maillet and V. Terras, Correlation functions of the XXZ Heisenberg spin-1/2 chain
in a magnetic field, Nucl. Phys. B567 (2000) 554 [math-ph/9907019]

[42] N. Kitanine, J.M. Maillet, N.A. Slavnov and V. Terras, Master equation for spin-spin correlation
functions of the XXZ chain, Nucl.Phys. B712 (2005) 600 [hep-th/0406190]

[43] N. Kitanine, J.M. Maillet, N.A. Slavnov and V. Terras, Dynamical correlation functions of the XXZ
spin-1/2 chain, Nucl.Phys. B729 (2005) 558 [hep-th/0407108]

[44] N. Kitanine, J.M. Maillet, N.A. Slavnov and V. Terras, On the algebraic Bethe Ansatz approach to
the correlation functions of the XXZ spin-1/2 Heisenberg chain, [hep-th/0505006]

11



P
o
S
(
S
o
l
v
a
y
)
0
0
6

XXX Spin Chain: from Bethe Solution to Open Problems Vladimir E. Korepin

[45] F. Göhmann, A. Klümper, A. Seel, Integral representations for correlation functions of the XXZ chain
at finite temperature , J.Phys. A 37 (2004) 7625 [hep-th/0405089]

[46] F. Göhmann, N. P. Hasenclever, A. Seel, Finite temperature density matrix and two-point correlations
in the antiferromagnetic XXZ chain, J.Stat.Mech. 0510 (2005) P015 [cond-mat/0509765]

[47] S.Y. Zhao, W.L. Yang and Y.Z. Zhang, On the construction of correlation functions for the integrable
supersymmetric fermion models, Int. J. Mod. Phys. B20 (2006), 505

[48] V.G. Knizhnik and A.B. Zamolodchikov, Current-algebra and Wess-Zumino model in 2 dimensions,
Nucl. Phys. B 247 (1984) 83

[49] I.B. Frenkel and N. Yu. Reshetikin, Quantum affine algebras and holonomic difference equations,
Comm. Math. Phys. 146 (1992) 1

[50] M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, A. J. Landhal, Perfect transfer of arbitrary
states in quantum spin networks, Phys. Rev. A 71 (2005) Art. No. 032312

[51] F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, World
Scientific Publishing Company, 1992

[52] M. Jimbo and T. Miwa, Algebraic analysis of solvable lattice models, AMS, 1995

[53] V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum inverse scattering method and
correlation functions, Cambridge University Press, 1993

12


