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We review the BFKL approach to the Regge processes in QCD. In the multi-colour QCD the equa-

tions for composite states of several Reggeized gluons in the leading logarithmic approximation

turn out to be integrable. In the next-to-leading approximation some of remarkable properties of

the BFKL dynamics remain to be valid in supersymmetric gaugetheories. In particular the coef-

ficients of the perturbative expansion of the eigenvalues ofthe kernels for the BFKL and DGLAP

equations in N=4 SUSY have the maximal transcedentality level. With the use of the AdS/CFT

correspondence we investigate relations between weak and strong coupling regimes in this model

in the framework of the Beisert-Eden-Staudacher equation and the Pomeron - Graviton duality.
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Transcedentality Property of N= 4 Supersymmetric Gauge Theories Lev Lipatov

1. Introduction

In the Born approximation the scattering amplitude in QCD athigh energies
√

s and fixed
momentum transfersq =

√
−t has a simple form showing in particular the helicity conservation

MA′B′
AB (s, t)|Born = gTc

A′A δλA′λA

2s
t

gTc
B′BδλB′λB

. (1.1)

In the leading logarithmic approximation (LLA)g2 lns∼ 1 one obtains for this amplitude the
Regge-type behavior [1]

MA′B′
AB (s, t) = MA′B′

AB (s, t)|Bornsω(t) , (1.2)

where the gluon Regge trajectory has an infrared divergencyregularized by a gluon massλ

ω(−|q|2) = − αc

4π2 Nc

∫
d2k

|q|2
|k|2|q−k|2 ≈−αc

2π
ln

|q2|
λ 2 . (1.3)

The final state particles at high energies for the processAB→ A′B′d1...dn−1 in LLA are pro-
duced in the multi-Regge kinematics

s≫ sr = (kr−1 +kr)
2 ≫ |qr |2 , kr = qr −qr+1 . (1.4)

Further, the gluon production amplitude in this region has the multi-Regge factorized form [1]

M2→1+n ∼
sω1
1

|q1|2
gTd1

c2c1
C(q2,q1)

sω2
2

|q2|2
...C(qn,qn−1)

sωn
n

|qn|2
, ωr = ω(−|qr |2) , (1.5)

where the Reggeon-Reggeon-gluon vertex for the produced gluon with a definite helicity equals

C(q2,q1) =
q2 q∗1

q2−q1
. (1.6)

We introduce the complex variables for the gluon transversecoordinates and momenta

ρk = xk + iyk , ρ∗
k = xk− iyk , pk = i

∂
∂ρk

, p∗k = i
∂

∂ρ∗
k

. (1.7)

Then in LLA the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation for the Pomeron wave
function can be written as follows [1]

EΨ(~ρ1,~ρ2) = H12Ψ(~ρ1,~ρ2) , ∆ = −αsNc

2π
min E , (1.8)

where∆ is the Pomeron intercept entering in the expression for the total cross-sectionσt ∼ s∆. In
the operator representation the BFKL Hamiltonian is simplified [2]

H12 = ln |p1p2|2 +
1

p1p∗2

(
ln |ρ12|2

)
p1p∗2 +

1
p∗1p2

(
ln |ρ12|2

)
p∗1p2−4ψ(1) , (1.9)

whereρ12 = ρ1− ρ2 andψ(x) = Γ′(x)/Γ(x). Here the kinetic energy is proportional to the sum
of the gluon Regge trajectoriesω(−|p1,2|2) and the potential energy∼ ln |ρ12|2 is obtained by the
Fourier transformation from the product of two verticesC(q2,q1).
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The BFKL Hamiltonian is invariant under the Möbius transformation [3]

ρk →
aρk +b
cρk +d

. (1.10)

There are two Casimir operators of the Möbius group

M2 =

(
2

∑
r=1

~M(r)

)2

= ρ2
12 p1 p2 , M∗2 = (M2)∗ . (1.11)

Their eigenvalue equations

M2 fm,m̃ = m(m−1) fm,m̃, M∗2 fm,m̃ = m̃(m̃−1) fm,m̃ (1.12)

define the conformal weights

m= 1/2+ iν +n/2, m̃= 1/2+ iν −n/2 (1.13)

with realν and integern for the principal series of unitary representations.
The Hamiltonian has the property of the holomorphic separability [4]

H12 = h12+h∗12, (1.14)

where the holomorphic Hamiltonianh12 is given below

h12 = ln(p1p2)+
1
p1

(lnρ12) p1 +
1
p2

(lnρ12) p2−2ψ(1) . (1.15)

2. Integrability of the multi-colour BFKL dynamics

Let us investigate the Bartels-Kwiecinskii-Praszalowiczequation [5] for then-gluon state

EΨ(~ρ1, ...,~ρn) = ∑
k<l

Ta
k Ta

l

(−Nc)
Hk,l Ψ(~ρ1, ...,~ρn) , (2.1)

whereTa
k is the gauge group generator acting on the colour index of thegluonk.

The BKP equation is especially simple in the multi-colour QCD, where the Hamiltonian is
simplified as followsH = 1

2 ∑kHk,k+1. It is invariant under the Möbius and duality transforma-
tions [6]

ρr,r+1 → pr → ρr−1,r . (2.2)

The corresponding wave function has the property of the holomorphic factorization [4]

Ψ(~ρ1,~ρ2, ...,~ρn) = ∑
r,s

ar,sΨr(ρ1, ...,ρn)Ψs(ρ∗
1 , ...,ρ∗

n) , (2.3)

where the coefficientsar,s are chosen from the condition of its single-valuedness.
The holomorphic Hamiltonianh commutes with the integrals of motion [2, 7]

qr = ∑
k1<k2<...<kr

ρk1k2ρk2k3...ρkr k1 pk1 pk2...pkr , [qr ,h] = 0. (2.4)
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The integrability of the BFKL dynamics [7] is related to the fact, thatH coincides with the local
Hamiltonian of the Heisenberg spin model [8].

In particular for the Pomeron wave function (n = 2) one can obtain the simple expression [3]

fm,m̃(−→ρ1,
−→ρ2;−→ρ0) =

(
ρ12

ρ10ρ20

)m(
ρ∗

12

ρ∗
10ρ∗

20

)m̃

(2.5)

with the corresponding energy having the holomorphic separability property

Em,m̃ = εm+ εm̃ , εm = ψ(m)+ ψ(1−m)−2ψ(1) , ψ(x) =
d
d x

lnΓ(x) . (2.6)

Further, the intercept of the BFKL Pomeron is positive [1]

∆ = 4
αs

π
Nc ln2 (2.7)

and, as a result, one obtains the violation of the Froissart bound

σ ∼ s∆ > cln2 s. (2.8)

One should restore thes-channel unitarity for scattering amplitudes. The consistent way to
solve this problem is to use the effective field theory for theReggeized gluons [9], [10].

3. DGLAP and BFKL equations in N = 4 SUSY

The parton distributions are expressed in terms of the corresponding unintegrated quantities

fa(x,Q
2) =

∫

k2
⊥<Q2

dk2
⊥ ϕa(x,k

2
⊥) . (3.1)

With the use of the Mellin transformation

fa( j,Q2) =

∫ 1

0
d x xj−1 fa(x,Q

2) (3.2)

the DGLAP equation [11] forfa(x,Q2) is written as a renormalization group equation forfa( j,Q2)

with the kernel expressed in terms of the anomalous dimension matrixγab

d
d lnQ2 fa( j,Q2) = ∑

b

γab( j) fb( j,Q2) . (3.3)

The momentafa( j,Q2) are proportional to matrix elements of the light-cone components of
the local twist-2 operators which are tensors or pseudo-tensors

Oa = ñµ1...ñµ j Oa
µ1,...,µ j

, Õ
a = ñµ1...ñµ j Õ

a
µ1,...,µ j

. (3.4)

The anomalous dimensions are the same for the different tensor projections

ñµ1...ñµ1+ω Oa
µ1,...,µ1+ω ,σ1,...,σ|n| l

σ1
⊥ ...l

σ|n|
⊥ . (3.5)
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Solutions of the BFKL equation are classified by the anomalous dimensionγ = 1
2 + iν and the

conformal spin|n|. The conformal spin coincides with the number of transverseindices of the
tensorOa.

In the next-to-leading approximation the eigenvalue of theBFKL kernel is given below [12]

ω = ω0(n, γ)+4 â2 ∆(n,γ) , â = g2Nc/(16π2) , (3.6)

where in QCD∆(n,γ) contains non-analytic functionsδn,0 and δn,2, but in N = 4 SUSY these
Kroniker symbols are cancelled [14].

Moreover, in theN = 4 model we obtain, that∆(n,γ) has the Hermitian separability property

∆(n,γ) = φ(M)+ φ(M∗)− ρ(M)+ ρ(M∗)
2â/ω

, M = γ +
|n|
2

, (3.7)

ρ(M) = β ′(M)+
1
2

ζ (2) , β ′(z) =
1
4

[
Ψ′

(z+1
2

)
−Ψ′

( z
2

)]
(3.8)

and is expressed in terms of special functions belonging to the maximal transcedentality class [14]

φ(M) = 3ζ (3)+ Ψ
′′
(M)−2Φ(M)+2β

′
(M)

(
Ψ(1)−Ψ(M)

)
, (3.9)

where

Φ(M) =
∞

∑
k=0

β ′(k+1)

k+M
+

∞

∑
k=0

(−1)k

k+M

(
Ψ′(k+1) − Ψ(k+1)−Ψ(1)

k+M

)
. (3.10)

Let us return now to the DGLAP equation [11]. One loop anomalous dimension matrix for
twist-2 operators inN = 4 SUSY was firstly calculated in Ref. [15]. The examples of such
operators are given below

O
g
µ1,...,µ j = ŜGa

ρµ1
Dµ2Dµ3...Dµ j−1G

a
ρµ j

, (3.11)

Õ
g
µ1,...,µ j = ŜGa

ρµ1
Dµ2Dµ3...Dµ j−1G̃

a
ρµ j

, (3.12)

O
q
µ1,...,µ j = ŜΨ̄aγµ1Dµ2...Dµ j Ψ

a , (3.13)

Õ
q
µ1,...,µ j = ŜΨ̄aγ5γµ1Dµ2...Dµ j Ψ

a , (3.14)

O
ϕ
µ1,...,µ j = ŜΦ̄aDµ1Dµ2...Dµ j Φ

a . (3.15)

The diagonalization of the anomalous dimension matricesγ andγ̃ gives the result

−4S1( j −2) 0 0
0 −4S1( j) 0
0 0 −4S1( j +2)

,
−4S1( j −1) 0

0 −4S1( j +1)
, (3.16)

containing one universal functionγuni for the super-multiplet of twist-2 operators

γ(0)
uni( j) = −4S1( j −2) , S1( j) =

j

∑
i=1

1
i
. (3.17)

Note, that this function has the maximal possible transcedentality, which is related to an integrabil-
ity of evolution equations for matrix elements of quasi-partonic operators inN = 4 SUSY [15].

5



P
o
S
(
S
o
l
v
a
y
)
0
0
7

Transcedentality Property of N= 4 Supersymmetric Gauge Theories Lev Lipatov

4. Two- and three- loop universal anomalous dimension in N = 4

Using the fact that the eigenvalue of the BFKL equation is expressed in terms of the most
complicated special functions and the hypothesis that all singularities of the anomalous dimension
can be obtained from this equation [13], we can argue [14], that the perturbative expansion of the
universal anomalous dimension

γuni( j) = âγ(0)
uni( j)+ â2γ(1)

uni( j)+ â3γ(2)
uni( j)+ ... (4.1)

should contain in each order of the perturbation theory onlyharmonic sums with the highest possi-
ble transcedentality. Such assumption allows us to find the universal anomalous dimension in two
loops [14] from the corresponding QCD expressions

1
8

γ(1)
uni( j +2) = 2S1( j)

(
S2( j)+S−2( j)

)
−2S−2,1( j)+S3( j)+S−3( j) , (4.2)

where

Sr( j) =
j

∑
i=1

1
ir

, S−r( j) =
j

∑
i=1

(−1)i

ir
, S−2,1 =

j

∑
m=1

(−1)m

m2 S1(m) . (4.3)

This result was verified by direct calculations of the anomalous dimension matrix [16].
Further, recently the three-loop anomalous dimension matrix for QCD was calculated [17]. It

allowed us to extract the universal anomalous dimension in three loops forN = 4 SUSY using the
above hypothesis of the maximal transcedentality [18]

1
32

γ(2)
uni( j +2) = 24S−2,1,1,1−12(S−3,1,1 +S−2,1,2 +S−2,2,1)

+6 (S−4,1 +S−3,2 +S−2,3)−3S−5−2S3S−2−S5

−2S2
1 (3S−3 +S3−2S−2,1)−S2(S−3 +S3−2S−2,1)

−S1
(
8S̄−4 + S̄2

−2+4S2S̄−2 +2S2
2

)

−S1
(
3S4−12S̄−3,1−10S̄−2,2 +16S̄−2,1,1

)
, (4.4)

where the generalized harmonic sums are the functions ofj given below

Sa,b,c,···( j) =
j

∑
m=1

1
ma Sb,c,···(m) , S−a,b,···( j) =

j

∑
m=1

(−1)m

ma Sb,···(m) , (4.5)

S−a,b,c···( j) = (−1) jS−a,b,...( j)+S−a,b,···(∞)
(

1− (−1) j
)
. (4.6)

5. Comparison with other approaches

The three-loop anomalous dimension forN = 4 SUSY at j = 1+ ω → 1

γN=4
uni ( j) = â

4
ω

−32ζ3 â2 +32ζ3 â3 1
ω

+ ... (5.1)

is in an agreement with the predictions of the BFKL equation [14].

6
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Near the negative even pointsj + 2r = ω → 0 one can verify, that the anomalous dimension
satisfies the equation

γuni = 4
â
ω

+
γ2

uni

ω
, (5.2)

corresponding to the resummation of the double logarithmicterms∼ α/ω2.
Further, one can calculate the universal anomalous dimension at largej

γuni = a(z) ln j , z=
αNc

π
= 4â (5.3)

up to three loops

a(z) = −z+
π2

12
z2− 11

720
π4z3 + ... . (5.4)

On the other hand, using the AdS/CFT correspondence [19] between the superstring model on the
anti-de-Sitter space and theN = 4 supersymmetric Yang-Mills theory, A. Polyakov with collabo-
rators predicteda(z) in the strong coupling limit [20]

lim
z→∞

a(z) = −z1/2 +
3ln2
4π

+ ... . (5.5)

In Ref. [16] the simple resummation of the perturbation theory for a(z) was suggested in the form

ã = −z+
π2

12
ã2. (5.6)

This prediction fora up to three loops is in a rather good agreement with the exact result

ã = −z+
π2

12
z2− 1

72
π4z3 + ... (5.7)

and with its asymptotic behaviour atz→ ∞.

6. Equations for the anomalous dimension at j → ∞

Let us introduce the new parameterε related toz in eq. (5.3)

ε =
1√
z
. (6.1)

It is obvious, that in the strong coupling regimeε → 0. Eden and Staudacher (ES) expressed the
coefficienta(z) appearing in the asymptotic expression (5.3) forγuni in terms of the new function

a(z) = −2
ε

f (0) , (6.2)

satisfying the integral equation [21]

ε f (x) =
t

et −1

(
J1(x)

x
−

∫ ∞

0
dy

J1(x)J0(y)−J1(y)J0(x)
x−y

f (y)

)
, t = ε x, (6.3)

whereJn(x) are the Bessel functions. The modified equation forf (x) was derived recently by
Beisert, Eden and Staudacher (BES) [22] with taking into account a phase arising from the crossing
symmetry of the underlyingS-matrix.

7
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Using the Laplace transformation

f (x) =
∫ i∞

−i∞

d j
2π i

ex j φ( j) (6.4)

one can write the following anzatz for the solution of the ES equation

φ( j) =
∞

∑
n=1

(δn,1−an,ε)
∞

∑
s=1

(√
( j +sε)2+1+ j +sε

)−n

√
( j +sε)2 +1

. (6.5)

The coefficientsan,ε satisfy the set of algebraic equations

an,ε =
∞

∑
n′=1

Kn,n′(ε)
(
δn′,1−an′,ε

)
, (6.6)

where the integral kernel is calculated explicitly [23]

Kn,n′(ε) = 2n
∞

∑
R=0

(−1)R 2−2R−n−n′

ε2R+n+n′ ζ (2R+n+n′)
(2R+n+n′−1)! (2R+n+n′)!
R! (R+n)! (R+n′)! (R+n+n′)!

. (6.7)

One can verify from this expression, that in all orders of theperturbation theory fora(z) the maxi-
mal transcedentality is valid and the coefficients in front of the products ofζ -functions are integer
numbers. Note, that for the BES equation [22] the kernelKn,n′(ε) should be multiplied by the factor
i =

√
−1 for odd values of the sumn+n′.

Using the new variablez= j +
√

j2 +1 one can write the dispersion representation [23]

ξ (z) =

∫

L

dz′

2π i
ξ (z′)−ξ (−1/z′)

z−z′
(6.8)

for the function

ξ (z) =
z2 +1

2z
(φ( j − ε)−φ( j)) . (6.9)

In the above dispersion representation forξ (z) the integration is performed along the unit circle
in the anti-clock-wise direction and the pointz is situated outside the circle. The corresponding
discontinuity satisfies the linearized "unitarity" constraint [23]

ξ (z)−ξ (−1/z)

2
√

j2 +1
= 1−

∞

∑
s=1

ξ
(

j +sε +
√

( j +sε)2 +1
)

√
( j +sε)2 +1

. (6.10)

For the case of the strong coupling regimeε → 0 one can solve the integral equations. In
particular, for the BES case [22] the anomalous dimension has the form [23]

lim
ε→0

aBES
sing = −1

ε
I1(2/ε)

I0(2/ε)
→−z (6.11)

in an agreement with the string side prediction [20].

8
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7. BFKL Pomeron and graviton in N=4 SUSY

It is possible to calculate the Pomeron intercept in theN = 4 supersymmetric gauge theory at
large coupling constants [18] (see also [24]). To begin with, one can simplify the eigenvalue for
the BFKL kernel in the diffusion approximation as follows (see [12])

j = 2−∆−Dν2 , γ =
j
2

+ iν , (7.1)

assuming, that the parameter∆ is small at largez∼ α . Due to the energy-momentum conservation
we haveγ | j=2 = 0 and thereforeγ can be expressed only in terms of the parameter∆

γ = ( j −2)

(
1
2
− 1/∆

1+
√

1+( j −2)/∆

)
. (7.2)

On the other hand, with the use of the AdS/CFT correspondence[19] the above eigenvalue equation
can be written as the graviton Regge trajectory

j = 2+
α ′

2
t , t = E2/R2 , α ′ =

R2

2
∆ . (7.3)

The behaviour ofγ atg→ ∞ and j → ∞ is known from the paper of Polyakov with collabora-
tors [20]

γ|z→∞ = −
√

j −2∆−1/2
| j→∞ =

√
π j z1/4 . (7.4)

Therefore one can obtain the Pomeron intercept at large couplings [18] (see also Ref. [24])

j = 2−∆ , ∆ =
1
π

z−1/2 . (7.5)

To verify this result independently one can calculate the slope of the anomalous dimension atj = 2

γ ′(2) =
1
2
− 1

2∆
= −π2

6
z+

π4

72
z2− π6

540
+ ... . (7.6)

Similar to the casej → ∞ we use the following resummation procedure [16]

π2

6
z= −b̃+

1
2

b̃2 , b = γ ′(2) . (7.7)

The weak and strong coupling asymptotics of the solution of this equation is given below

b̃ = −π2

6
z+

π4

72
z2− π6

432
z3 + ... , lim

z→∞
∆̃ =

√
3

2π
z−1/2 , (7.8)

which is in a good agreement with the above results for∆ andb.

8. Discussion

It is important, that in QCD the gluons and quarks are reggeized. For solving the unitarization
problem for the BFKL Pomeron one should use the effective action for interactions of Reggeons
and particles in the quasi-multi-Regge kinematics. The Reggeon calculus in the form of a 2+1

9
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field theory can be derived from QCD. In the framework of this approach thet -channel unitarity
is automatically fulfilled. Thes-channel unitarity is incorporated in the Reggeon theory through
the bootstrap equations (see [1]) and various relations among the effective vertices. The next-
to-leading correction to the eigenvalue of the BFKL kernel in N = 4 SUSY does not contain the
non-analytic terms. It is a sum of the most complicated functions which could appear in this order.
Using the hypothesis of the maximal transcedentality for the universal anomalous dimension of the
twist-2 operators this quantity was calculated up to the third order. We suggested a resummation
procedure and verified the strong coupling predictions obtained from the AdS/CFT correspondence.
In particular, the analytic properties of the ES equation for γ( j) at j → ∞ were investigated. It was
shown, that the solution of the BES equation reproduces the string predictions for the anomalous
dimension at large coupling constants. We calculated also the intercept of the BFKL Pomeron in
N = 4 SUSY in the same limit.
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