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The6-vertex model Nicolai Reshetikhin

1. Introduction

*

Ising and dimer models were among the first models in two-dimensional statistical mechanics for where
the partition function and for some of the correlation functions were computed explicitly in terms of Pfaffians
of certain matrices. For this reason both of these models can be regarded as theories of Gaussian discrete
two dimensional fermi field. The Ising model was solved by Onsager and for dimer models the Pfaffian
solution was found by Kasteleyn.

The 6-vertex model, a particular case of which is the ice model is interesting for a number of reasons.
Physically, it is a model of ferro- and antiferro- electricity. It has many equivalent reformulations, .one
of them (which we will use) describe the 6-vertex configurations on a planar connected simply connected
region in terms of stepped surfaces. One of the combinatorial reformulations of the 6-vertex model for
specific value of parametel&yip] is related to alternating sign matricédreq.

The 6-vertex model generalizes dimer models and can be regraded as the theory of Gaussian discrete
fermions with four fermionic interaction. The partition function of the 6-vertex model with periodic bound-
ary conditions was computed ihigb] using the Bethe Ansatz method.

The computation of correlation functions in tBevertex model is highly non-trivial and to the large
degree is still a challenge. There are two known approaches to this problem based on the internal symmetry
of the model, i.e. on the representation theory of quantum affine algebras. First approach is based on
determinantal formulae for certain matrix eleme#Bl]. For some recent results based on this method see
[BPZ] and [CF]. The second approach is based on form-factor formulae derivéghih [For an overview
of this approach se@M] and for the latest results seBIMST].

The 6-vertex model on a planar simply regions can be reformulated as the theory of random stepped
surfaces. A configuration of arrows in a 6-vertex model can be interpreted as a configuration of paths which
can be viewed as level corves ohaight functiondefining a stepped surface. Gibbs measure on 6-vertex
configurations define a Gibbs measure on stepped surfaces.

For certain class of such Gibbs measures, random surfaces in the thermodynamical limit develop the
limit shape phenomenoishe] also known as the acric circle phenomen@iH. It means that on macro-
scopical scale the random surface becomes deterministic. The fluctuations remain at smaller scale and the
structure of fluctuations may change depending on how singular the limit shape is at this point. The limit
shape phenomenon is studied in details in dimer mo#&g.[

The numerical results fronAR][SZ] show how limit shapes develop in a 6-vertex model with domain
wall boundary conditions. In this paper we will focus on the limit shape phenomenon for the 6-vertex model
on a planar connected simply connected regions with fixed boundary conditions. Computing the limit shape
involves two steps.

Step one is the derivation of the formula for the free energy of the 6-vertex model as a function of mag-
netic fields. Unlike the partition function of dimer models, the free energy can not be computed explicitly.
However, it can be written in terms of the solution to a linear integral equation. Many analytical properties of
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the partition function are known but scattered in the literature, see for exa¥apie][ Yang [ SY][ISY1[LW]
[BS][Nold][NK]. We collected most of them in the secti8itogether with some new results.

Step two is to derive and solve the variational principle which determine the limit shape for given
boundary conditions. The free energy of the model as a function of magnetic fields determine the functional
in the variational problem. Such variational problem was first introduced for dimer mod®&«®|.[ The
idea of using this variational problem in the 6-vertex first appearedihWhere some interesting partial
results were obtained for correlation functions in the bulk of the limit shape.

The structure of fluctuations near the limit shape is determined by the asymptotical behavior of corre-
lation functions at smaller scales. We will discuss this problem for the 6-vertex model in the last section.

Finally let us mention the special case of domain wall boundary conditions. These boundary conditions
first appeared in the computation of norms of Bethe veclkos][ The remarkable fact about them is that
the partition function of the 6-vertex model with these boundary conditions can be written as a determinant
[1ze]. Another remarkable fact is that exactly these boundary conditions relate the 6-vertex model with
alternating sign matriceXup]. The large volume asymptotic of the partition function of the 6-vertex mode
with these boundary conditions was computecKZ]Z].

Here is the outline of the paper. In the first two sections we recall some basic facts abéwettex
model, about its reformulation it in terms of height functions, and about the thermodynamical limit in'the
model. The third section contains the description of the free energy per site for as the function of electric
fields in thermodynamical limit for periodic boundary conditions. Some asymptotical behaviors of the-free
energy are computed in section 4. This section is a combination of an overview and original results..-In
section 5 we study the asymptotical behavior of the limit shapes near the "freezing point". In the last section
we discuss fluctuations.

We thank C. Evans, R. Kenyon, A. Okounkov, and S. Sheffield for interesting discussions. The work
of N.R. was supported by the NSF grant DMS 0307599, by the Niels Bohr initiative at Aarhus University,
by the Humboldt foundation and by the CRDF grant RUMI1-2622 The work of K.P. was supported by the
NSF RTG grant and DMS 0307599.

2. The6-Vertex Model

2.1 The6-vertex model

First, let us fix the notation. A squalex M grid Ly v is a graph witid- and1-valent vertices embedded
into R? such tha#-valent vertices are located at poititsm), n=0,1,...,N—1,m=0,1,...,M —1 (see
Fig.2) and1-valent vertices are located@t1,m),(N,m),m=0,1,...,M—1and atn,—1),(n,M—1),n=
0,1,...,N—1. An edge connecting twd-valent vertices is called anner edge and an edge connecting a
4-valent vertex with d-valent vertex is called aouteredge.

States of thé-vertex model orLy v are configurations of arrows assigned to each edge (i.e. orienta-
tions of Ly m). They satisfy the ice rule: at any vertex the number of incoming arrows should be equal to
the number of outgoing arrows. Six possible configurations at a vertex are shown dn €anfigurations
of arrows on boundary edges are called boundary conditions.
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Each configuration of arrows on the lattice can be equivalently described as the configuration of “thin”
and “thick” edges or empty and occupied edges shown onl-igjhere should be an even number of thick
edges at each vertex as a consequence of the ice rule. The thick edges form paths. We assume that paths do
not intersect (two paths may meet atanvertex). So, equivalently, configurations of tBeertex model
can be regarded as configurations of paths satisfying the rules frorf. Fig.

To each configuration of arrows on edges adjacent to a vertex we assign a Boltzmann weight, which we
denote by the same letters. The physical meaning of a Boltzmann weégtp{is%), wherekE is the energy
of a state and is the temperature (in the appropriate units). Thus, all numégray, b, by, c1, andc,
should be positive.

Choosing the scale such that= 1, it is natural to write Boltzmann weights in the exponential form.

_E +HAV _E—H-V
ap =g LtV a=e -t ,

—Ex+H-V —Ex>—H+V
by =e =2V, by =e 2 ,
cp=¢e 5, co=¢e 5,

whereE;, Ez, andE3z are dimensionless interaction energies of arrows at different types of vertices, and
H andV are dimensionless horizontal and vertical components of the magnetic field, respectively. In-this
interpretation arrows are spins interacting with the magnetic field. We, setc, because for the types of
boundary conditions we will consider the difference between the numlognafrtices and;, vertices is the
same for all states and, therefore, the probability does not depend on the faio

We also use the standard notation

a=e &, b=eF, c=e 5.

These are the weights of the model when there is no magnetic field.
The weight of a state is the product of weights of vertices in the state. The weight of a stajdumn
to a constant factor) can be written in terms of energies and magnetic fields as

exp(—EiN(a) — ExN(b) — EsN(c) + %N(hor) + %N(ver))

whereN(a) is the total number odi-vertices N(b) is the total number db-vertices N(c) is the total number
of c-vertices,N(hor) is the total number of horizontal edges occupied by paths,N{wért) is the total
number of vertical edges occupied by paths.

The patrtition function is the sum of weights of all states of the model

Z= Z |_| w(vertex),

ateyertices
wherew(vertex is one of the weights from FidL.
Weights define the probabilistic measure on the set of states 6ftbetex model. The probability of
a state is given by the ratio of the weight of the state to the partition function of the model
w(vertex)
Z .

P(St ate _ rlvertice
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Figure 1: The6 types of vertices and the corresponding thin and thick edges configurations

This is the Gibbs measure of tBevertex model.
Let us define the characteristic function of an edgs

1, if eis occupied by a path
0, otherwise

Oc(state = {

A local correlation function is the expectation value of the product of such characteristic functions:
n
states i=

2.2 Boundary Conditions
2.2.1

Let us fix arrows (or, equivalently, think edges) on outer edgds\@j. States in the 6-vertex with
the same configurations of arrows on the boundary are called statefixgiifboundary conditions. The
difference between two such states can occur only at inner edges.

The space of states with fixed boundary conditions is empty unless the boundary values satisfy the
ice rule: the total number of incoming arrows on the boundary edges should be equal to the total number
of outgoing arrows. In the path formulation this means that the number of paths through North and West
boundaries should be equal to the number paths through the South and East boundaries.

An example of such boundary conditions is the domain wall (DW) boundary conditions. For the DW
boundary conditions the arrows on the boundary of the lattice are going into the lattice at the top and bottom
of the lattice and are going out of the lattice at the right and left of it. A configuration of path%onba
lattice with DW boundary conditions is presented on [2g.
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Figure 2: A possible configuration of paths orba< 5 square grid for the DW boundary conditions

Notice that the differences
Na=n(ag) —n(az), np=n(by)—n(bz), nc=n(cz)—n(cy)

are the same for all configurations with given fixed boundary conditions. m&jes the total number of
vertices of typex = a;, by, ¢ in the configuration.
In particular, the partition function for fixed boundary conditions trivially depends on magnetic fields:

Nc

2
Cz) Z(a,a,b,b,c,c)

Z(ay,ap,by, by, c1,Cp) = eHMHVre) (c
1

In this paper we will focus on thévertex model with fixed boundary conditions.

222

Another important type of boundary conditions are gegiodic boundary conditionsIn this case
the edges at opposite sideslgf v are identified so that the configuration of arrows on the left and right
boundary is the same as well as the configuration of arrows on the top and bottom boundary.

The 6-vertex model with periodic boundary conditions is an example of an “integrable” (solvable)
model in statistical mechanics and has been studied extensivelBagdlW] and references therein. In
particular, it means that the row-to-row transfer-matrix of the model can be diagonalized by the Bethe ansatz.

2.3 The Height Function

By outer facesve mean unit squares centered-a, m), (N—3,m), withm=—3.1,... M -1 and
(n,—3), (n,N—3),withn=—3,1.....N— 1. Each corner outer face has two edges in their boundary, other
outer faces have three edges in their boundary.
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A height functionh is an integer-valued function on the fadgg of the gridLy (including the outer
faces), which is

e zero at the southwest corner of the grid,
e non-decreasing when going up or right,
e if f; andf, are neighboring faces, théim(f;) —h(f2)| < 1.

Theboundary valuef the height function is its restriction to the “outer faces”. Denote the set of outer
faces bydFy. Given a functionh® on dFy denote.#(h(9) the space of all height functions with the
boundary valud(©.

If we enumerate faces by the coordinates of their centers the height function can be regdided as
1) x (M + 1) matrix with non-negative entries.

It is clear that there is a bijection between states oftdvertex model with fixed boundary conditions
and height functions with fixed boundary values.

Indeed, given a height function consider its “level curves”, i.e. paths on thdgridzhere the height
function changes its value iy see Fig.3. Clearly, this defines a state for tbevertex model orLy with
boundary conditions determined by the boundary values of the height function.

On the other hand, given a state in #wertex model, consider the corresponding configuration-of
paths. Itis clear that there is a unique height function whose level curves are these paths and which satisfies
the conditionh = 0 at the southwest corner.

It is clear that this correspondence is a bijection.

There is a natural partial order on the set of height functions with given boundary values. One function
is bigger then the other if it is entirely above the other. There exist the minimymand the maximum
hmax height functions such thét,i, < h < hpnax for all height functionsh.

Thus, we can consider tlevertex model as a theory of fluctuating discrete surfaces constrained be-
tweenhmyax andhnin. Each surface occurs with probability given by the Boltzmann weights od-thertex
model.

2.4 The inhomogeneous$-vertex model and volume weights

In the inhomogeneows-vertex model the Boltzmann weights depend on the edge. Thus, weéNave
parameters;(m, n), b;(m,n), andc;(m,n).

Let us assume that the inhomogeneity is only in magnetic fields, i.e. weigh@ndc do not change
from edge to edge, but the magnetic fieldlee), V (e) do.

Let {P} be the collection of paths corresponding to a state inGtilertex model andh(f)} be the
corresponding height function.

Proposition 2.1. Let us assign weightge) to the edges of the lattice arido the outer edges, then

h(f) _
D Q¢ = D Qs(e)
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Figure 3: Values of the height function for the configuration of paths given on figure 2.

whereqs = s(e;)s(e2)s(e3) 1s(eq) 1 for inner facesgs = s(e)¢® for the outer facef adjacent to the edge
e, gs = 1 for outer faces not adjacent to any edge of the lattice (corner faces)ébh= 1 for edges at the
upper and right sides of the boundagye) = —1 for edges at the lower and left sides of the boundary.

The proof is an elementary exercise.

Lets(e) = exp(H (e) for horizontal edges argle) = exp(V (e)) for vertical edges. Then the probability
of the state with the height functidnin such a model is

[1¢ q?( P MverticesWo(vertex

Py(state = Z

If H(n,m) =H +amandV(n,m) =V +bn, the weightys are the same for all faceg = exp(a+ b)
inside the lattice and the probability is given by

qVOI(h) rlverticesW(Ve rtex)
Z 9

P(statg =
wherew(vertey are the Boltzmann weights with constant magnetic fields and

vol(h) = § h(f)

feln

is the volume “under” the height functidn
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3. The thermodynamic limit

3.1 Stabilizing sequence of fixed boundary conditions
3.1.1

Leta= M/N. We place the grid.y m inside of the rectangl@ ={(x,y)|0<x<1,0<y<a} sothat
the vertices of the grid are the points with coordme(ﬁ@%, ni1) wheren=1,...,N, m=1,....M.

We recall that a height function is a monotonic integer-valued function on the faces of the grid, which
satisfies Lipshitz condition (it changes at mostlgn any two adjacent faces). The height function can
be regarded as a function on the centers of the faces of the grid, ie-ed/2,m—1/2), wheren =
0,....,N+1, m=0,1,...,M+1 The points(3,m—3), (N+3,m—3), (n—3,3), and(n— 1, M+ 1),
wheren=0,...,N+1, m=0,...,M+ 1 correspond to the “outer” faces bf u.

We introduce the normalized height function as a piecewise linear function on the unit square with the
value 1

hmorm()gy) = NhN(mm)'

for gl <x< ,Qill andgT; <y < ﬁ—ﬁ Herehy(n,m) is a height function oty m. Normalized height

functions are nondecreasingiandy directions and they satisfy:

if x>x andy>vy.

The boundary value of the normalized height function defines a piece-wise constant monotonic function
on each side of the region which changesthl/N or do not change between two neighboring boundary
sites.

Denote the space of such normalized height functions with the boundaryhgye_n v (ho).

There is a natural partial ordering on the set of all normalized height functions with given boundary
values descending from the partial order on height functidns: hy if hi(x) > ha(x) for all x e D. We
define the operations

h1 v ha = minkep (h1(X), ha(X)), hy Aha = maxep (hi(x), ha(X)),
Itis clear that
hiAhp >hg,ho > hy vy

It is also clear that in this partial order there is unique minimal and unique maximal height functions, which
we denote byl"™ andhl®, respectively.
A sequence of stabilizing fixed boundary conditimes sequence of functioméN) which are boundary
values of a normalized height function, and which converges ?R?-aso to a functiong on the boundary Topology
of D which is non-decreasing aloxgandy direction,(0,0) = 0, and satisfies the condition:

P(x,y) —@(X,y) <x—X+y—y (3.2)
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We will call the functiong the boundary condition for the domaih (or simply the boundary condi-
tion). Any function onD which satisfies3.2), which is non-decreasing xandy directions, and coinside
with ¢ at the boundary is calledtreight function orD with boundary conditiong,.

Among all possible boundary conditiogs we will distinguish piecewise linear boundary conditions
with the slopel or 1 along the coordinate axes. We will call these boundary vadutisal . It is clear that
any boundary conditions can be approximated critical boundary conditions.

3.2 The thermodynamic limit

If gis fixed and is not equal tbin the large volume limit, the system will be in a neighborhood of the
minimal height function fog < 1 and in the neighborhood of the maximal height functiondor 1. One
should expect that the partition function and local correlation functions will have finite limit.

Wheng = exp(%) for someA, one should expect the existence of the limit shape. We will study this
limit in Section?.

3.3 Gibbs measures with fixed slope

Definition 3.1. The Gibbs measure of tievertex model on an infinite lattice has the sldpev) if

h(n—+k,m) —h(n,m)

jim < K >=h
and
Ilim - h(n,m+ kl)(—h(n, m) oy

Itis clear from the definition of the height function that the slope should satisfy condiigrs v < 1.

The slope is simply the average number of horizontal and vertical edges occupied by paths per length.

The important corollary of the result o8hel is that, when a gradient Gibbs measure satisfies certain
convexity conditions, there exists a unique translationally invariant measure. This implies that &er the
vertex model one should expect the uniqueness of such a measure for the generic slope.

Translationally invariant measures can be obtained by taking the thermodynamic limit of the 6-vertex
model with magnetic fields on a torus. Then the slope is the Legendre conjugate to magnetic fields.

o o N(hor), 1 Jdlogz 1
h= N,Illllrloo<ae> - N7II{/Irioo< N )= N,II\I/Inloo 2NM JH 2
for a horizontale and
o L N(ver), . 1 Jdlogz 1
v=lim (o) = Im TR T oM v T2

for a verticale.

10
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4. The thermodynamic limit of the 6-vertex model for the periodic boundary conditions

The free energy per site in the thermodynamic limit is

jim 1°9(Znm)

f= " NM—wo NM

whereZy v is the partition function with the periodic boundary conditions on the rectangulatggid It
is a function of the Boltzmann weights and magnetic fields.

Remark 1. Normally, it is expected that the free energy is not identically zero. Physically, this means that
the “excitations” have the characteristic length which is much smaller than the characteristic length of the
system. In some cases the free energy is identically zero, then one expects that a typical excitation will be
comparable with the size of the system.

For genericH andV the 6-vertex model in the thermodynamic limit has the translationally invariant
Gibbs measure with the slopk, v):

10f 1 10f 1
"=tz VT 2w T2 #1)
The parameter
N P
- 2ab

defines many characteristics of ®&&ertex model in the thermodynamic limit.

4.1 The phase diagram forA > 1

The weightsa, b, andc in this region satisfy one of the two inequalities, eithes b+corb > a+c.
If a> b+ c, the Boltzmann weights, b, andc can be parameterized as

a=rsinh(A+n),b=rsinh(A),c=rsinh(n) (4.2)

with A, n > 0.
If a4+ c < b, the Boltzmann weights can be parameterized as

a=rsinh(A —n),b=rsinh(A),c=rsinh(n) (4.3)

withO<n <A.

For both of these parametrization of weights- coshn).

The phase diagram of the model #or b+ c (and, thereforea > b) is shown on Fig5and forb > a+c
(and, thereforea < b) on Fig.l6.

When magnetic fieldéH,V) are in one of the region4;, B; of the phase diagram, the system in the
thermodynamic limit has the translationally invariant Gibbs measure supported on the corresponding frozen

11
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configuration. There are four frozen configuratigks A», B, andBy, shown on Fig.4. For a finite but
large grid the probability of any other state is at most of ordgX—aN) for some positivex.

Local correlation functions are given by the value of the corresponding observable on the frozen state

lim (Og, ... 0g,)N = 0g,(S) ... 0g,(S)

N—oo

whereSis the one of the ferromagnetic statgsb;.

The frozen regions in theH,V)-plane are described by the set of inequalities. The boundaries of these
regions can be derived by analyzing the next to the largest eigenvalue of the row-to-row transfer matrix. The
description is separated into two casas: b+ c andb > a-+ c. Notice thata # b sinceA > 1.

e a> b+c, see Figh,

Al-region' V+H>0, cosh2H) <A,

(e —b/a)(e® —b/a) > (c/a)®, € >b/a,  cosh2H)>A
Ap-region:  V+H <O, cosh2H) <A,

(e~ b/a)( xd b/a) (c/a)?, e >bj/a, cosh2H)>A
Bi-region:  (e* —a/b)(e? —a/b) > (¢/b)?, € >a/b,
Bo-region: (e —a/b)(e —a/b) > (c/b)?2, e >a/h

e b > a+c, see Figl,

Aj-region: (e —b/a)(é? —b/a) > (c/a)?, €M >b/a
Ao-region: (e —b/a)(e? —b/a) > (c/a)?, e >b/a
B;-region: V—-H>0, cosh2H) <A,

(e —a/b)(e? —a/b) > (c/b)?, € >a/b,  cosh2H)>A
B,-region: V-H<O0, cosh2H) <A,

(e —a/b)(e? —a/b) > (c/b)?, e >a/b,  cosh2H)>A

Figure 4: Four frozen configurations of the ferromagnetic phase

12
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0.5

0.5

Figure 5: The phase diagram in thél,V)-plane fora=2,b=1, andc = 0.8

The free energy is a linear functionthandV in the four frozen regions:

f=—lna—H-V in A,
f=—Inb+H-V in  Bp, 4.4)
f=—Ina+H+V in Ay,
f=—Inb—-H+V in B;j.
If (H,V) is a regionD; or D, the corresponding translationally invariant Gibbs measure has the slope
(h,v) given by @.1). In this phase the system is disordered, which means that local correlation functions

decay as a power of the distardigs , e;) betweers ande; whend(e, ej) — oo.
In the regiond4 andD» the free energy is given biglY]:

c2

: . 1 b
f(H,V) = mln{nyn{El —H-(1-2a)V— Z—m_/cln(gl - M)p(z)dz}’
. 1 a?—c? c?
rryn{EerH —(1-2a)V - ﬁ/Cln( =+ ab_azz)p(z)dz}}, (4.5)
wherep(z) can be found from the integral equation
1,1 o) g1 pw)
P& =2t 21 o 2=z ™ 21t Jo -z (w) ™ (4.6)

13
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0.5

0.5 1

Figure 6: The phase diagram in thél,V)-plane fora= 1, b= 2, andc = 0.8

in which
1

“ 2w
p(z) satisfies the following normalization condition:

1
a= Z—m_/cp(z)dz

The contour of integratio@ (in the complexz-plane) is symmetric with respect to the conjugation z, is
dependent oil (see AppendiB) and is defined by the condition that the fopfe)dzhas purely imaginary
values on the vectors tangentGo

z (W)

Re(p(z)dz)’zec ~0.

The formula 4.5) for the free energy follows from the Bethe Ansatz diagonalization of the row-to-
row transfer-matrix. Its derivation is outlined in Appendx It relies on a number of conjectures that are
supported by numerical and analytical evidence and in physics are taken for granted. However, there is no
rigorous proof.

There are two points where three phases coexist (two frozen and one disordered phase). These points
are calledricritical . The anglef between the boundaries bf, (or D) at a tricritical point is given by

2
c?+2min(a,b)2(A2—1)°

coq0) =

14
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The existence of such points makes @eertex model (and its degeneration known asShertex model
[HWKK]) remarkably different from dimer model&DS] where generic singularities in the phase diagram
are cusps. Physically, the existence of singular points where two curves meet at the finite angle manifests
the presence of interaction in tBevertex model.

Notice that whem\ = 1 the phase diagram of the model has a cusp at the pbiaty = 0. This is the
transitional point between the regidr> 1 and the regionA| < 1 which is described below.

4.2 The phase diagram4| < 1

In this case, the Boltzmann weights have a convenient parameterization by trigonometric functions.
Whenl>A>1

a=rsin(A —y),b=rsin(A),c=rsin(y),

whereO <y <m/2, y<A < 11, andA = cosy.
When0>A> -1
a=rsin(y—A),b=rsin(A),c=rsin(y),

whereO <y < /2, m—y <A <, andA = —cosy.

The phase diagram of tléevertex model withA| < 1 is shown on Fig./. The phase#y, B; are frozen
and identical to the frozen phases for- 1. The phasé is disordered. For magnetic fieldsl,V) the
Gibbs measure is translationally invariant with the slgpe) = (2fH:V) 9THY)y

oH T oV
The frozen phases can be described by the following inequalities:

Aj-region: (e —b/a)(e? —b/a) > (c/a)?, € >Db/a,

Ao-region: (e —b/a)(e? —b/a) > (c/a)?, e >b/a,

Bi-region: (€M —a/b)(e? —a/b) > (¢/b)?, > a/b, (4.7)
Bo-region: (e —a/b)(e¥ —a/b) > (¢/b)?, e >a/h

The free energy function in the frozen regions is still given by the formul. (The first derivatives
of the free energy are continuous at the boundary of frozen phases, The second derivative is continuous in
the tangent direction at the boundary of frozen phases and is singular in the normal direction.

It is smooth in the disordered region where it is given By&Y which, as in cas@é > 1 involves a
solution to the integral equatiod.€). The contour of integration ird(€) is closed for zero magnetic fields
and, therefore, the equatiofh.€) can be solved explicitly by the Fourier transformati@ak] .

The 6-vertex Gibbs measure with zero magnetic fields converges in the thermodynamic limit to the
superposition of translationally invariant Gibbs measures with the glbf#z1/2). There are two such
measures. They correspond to the double degeneracy of the largest eigenvalue of the row-to-row transfer-
matrix |Bax].

There is a very interesting relationship between @heertex model in zero magnetic fields and the
highest weight representation theory of the corresponding quantum affine algebra. The double degeneracy
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Figure 7: The phase diagram in thél,V)-plane fora=1, b= 2, andc = 2

of the Gibbs measure with the slopk/2,1/2) corresponds to the fact that there are two integrable irre-
ducible representations sk at level one. Correlation functions in this case can be computed gsiagex
operatorsJM). For latest developments sé@JMST].

4.3 The phase diagramA < —1

4.3.1 The phase diagram

The Boltzmann weights for these valuesofan be conveniently parameterized as
a=rsinh(n —A),b=rsinh(A),c=rsinh(n), (4.8)

where0 < A < n andA = —coshn.

The Gibbs measure in thermodynamic limit depends on the value of magnetic fields. The phase diagram
in this case is shown on Fi@ for b/a > 1. In the parameterizatio(§) this correspond t&d < A < n/2.
Whenn /2 < A < n the4-tentacled “amoeba” is tilted in the opposite direction as on5igivhen(H,V)
is in one of theA;, B; regions in the phase diagram the Gibbs measure is supported on the corresponding
frozen configuration, see Fig.

16



The6-vertex model Nicolai Reshetikhin

.
)
w -

Q
(N

Figure 8: The phase diagram in thél,V)-plane fora=1,b=2, andc =6

The A;, B; regions on the phase diagram are defined by inequaldigs. (The free energy in these
regions is linear and is given b¥.6).

If (H,V) is in the regiorD, the Gibbs measure is the translationally invariant measure with the slope
(h,v) determined by4.1). The free energy in this case is determined by solutions to the linear integral
equation/4.€) and is given by the formul&(E).

If (H,V)isinthe regiom, the Gibbs measure is the superposition of two Gibbs measures with the slope
(1/2,1/2). Inthe limitA — —oo these two measures degenerate to two measures supported on configurations
C,1,C,, respectively, shown on Fi@. For a finiteA the support of these measures consists of configurations
which differ fromC; andC; in finitely many places on the lattice.

We natice that any two configurations lying in the support of each of these Gibbs measures can be
obtained fromC; or C; via flipping the path at a vertex “up” or “down” as it is shown on Fif] finitely
many times. It is also clear that it takes infinitely many flips to go f@no C,.

The6-vertex model in the phaskis disordered and is also noncritical.

Here non-criticality means that the local correlation functjogoe;) decays agxp(—ad(e;,€j)) with
some positivexr as the distancd(g;, e;) betweerg ande; increases to infinity.

The free energy in tha-region can be explicitly computed by solving the equatig)(via the Fourier
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transformBax].

4.3.2 The antiferromagnetic region

This boundary of the antiferromagnetic regincan be derived similarly to the boundaries of the
ferromagnetic regiond; andB; by analyzing next to the largest eigenvalue of the row-to-row transfer-matrix.
The difference is that for the regighthe largest eigenvalue will correspondrte=- N/2 and to compute it
we should use the solution to the integral equat#f)(in the case when the contour of integration is closed.

This computation was done i&Y], [LW]. The result is a simple closed curve, which can be described
parameterically as

H(s)==(s), V(9 ==(n—6+9),

where

_ _ 1
=(¢) =cosh 1<dn(§¢1—V))’

ls| <2n,

and
6 _ 1+maxb/aa/b)e
~ max(b/a,a/b)+e€1 "

The parametev is defined by the equatiapK (v) = niK’(v), where

Kiv) = ./on/z(l“’S‘”ZW))l/zde K'(v) = /Om(l— (1—v)sir?(6))*/2de.

The curve is invariant with respect to the reflectidghsV) — (—H,—-V) and(H,V) — (V,H) since
the function= satisfies the identities

=(@)=—-=(-9), =(n-¢)==(n+9¢)

This function is alsatn-periodic:=(4n + ¢) = =(¢).

Figure 9: Two most probable configurations in the antiferromagnetic phase.
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down —

Figure 10: The elementary up and down fluctuations in the antiferromagnetic phase.

Proposition 4.1. The boundary of the antiferromagnetic region is a real algebraic cune®iande’ given
by
2
((1 — vecostVp) costtH + sint? Vg — (1 — v) coshvp cosH cosh/) =
(1— v coshVp) sint?VpcostV sint? H (1 — vcosifH), (4.9)

where\, is the positive value df on the curve wheid = 0. Notice thatv depends on the Boltzmann
weightsa, b, c only throughn.

Proof. The parametric description of the boundary curve implies that

1 K 1
~ coshH dn(I—T(r] —fot9l-v)= coshv

dn(%s]l— V)

The addition formula for the Jacobi elliptic functicim [AS]

dn(u+v) = dnudnv — (1 — m)srucnusrvenv
B 1— (1—m)srPusrév

can be used to expresisu anddnv for u= K(n — 6y)/m andv = Ks/m in terms ofN andV. Using
elementary identities for the elliptic functions, we obtain

srfucru(drtv — v) (1 — drPv) = (dnudrv — dn(u+ v) (crPu+ srfudriv) )2

Foru=K(n — 6y)/mandv = Ks/mthis identity turns into
2
(cnzucost‘? H + srfu— dnucoshH cosh/) = crfusrfucosifV (costfH — 1)(1—mcosif H).

Denotedn(%(n — 6p)|1—m) = 1/ coshvy, then this identity becomed.©). O
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5. Some asymptotics of the free energy

5.1 The scaling near the boundary of theD-region

Here we study the asymptotics of the free energy oféivertex model as the poirfH,V) inside a
disordered region approaches its boundary on the phase diagram of the model.

Let us consider the interface between the disordered ré&yi{@p» for A > 1) and theA;-region, see Fig.
7. Itis given byg(H,V) = 0, where

c?/a?

=y (5.1)

Let Ho = (Ho,Vo) be a regular point on the interface, i.e. the interface can be parameterized by real
analytic functions in its neighborhood, thgfHo, Vo) = 0.

We denote the normal vector to the interfaceigby fi and the tangent vector iy A pointH = (H,V)
in the vicinity of Hy can be represented ﬁir, st)= Ho+ résii+rt ¥, wheres andt are local coordinates in
the normal and tangent directions, respectively, aisda scaling factor such that— 0. Let us choose the
normal vectoifi so that it points in the direction of the disordered rediprihen the pointi(r, s,t) belongs
toDif s>0.

Theorem 5.1. LetI:|(r, s,t) be defined as above. The asymptotics of the free energy &viaigex model in
the limitr — Qs given by

f(F(r,s1) = fin(H(r,s,t)) 4+ n(s,t)r3+0(r>), (5.2)

wherefjj,(H,V) = —In(a) —H -V and

3/2

n(st) = —k (8s+t?) (5.3)

Here the constants and 8 depend on the Boltzmann weights of the model andHgr\p) and are given by

16
K = 3—7_[(9,_219(H0,V0)
and
gt (9n9(Ho, Vo))
20%9(Ho,Vo)

whereg(H,V) is defined in/§.1).
Moreover,d3g(Ho, Vo) > 0 and, thereforep > 0.

We refer the reader t@] for the details.
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5.2 The scaling in the tentacle

Assume that > b. The theorem below describes the asymptotic of the free energy function when

H — 4o and X

1 ¢ on 1 c® oo
- - <V <= — — 00, .
2In(b/a) 5ab <V< 2In(b/at) + Zabe , H 00 (5.4)
These values ofH,V) describe points inside the right “tentacle” on the Fag.

Let us parameterize these valued/ods
1 c?
V = ZIn(b/a)+ B ——e
wheref € [-1,1].

Theorem 5.2. WhenH — o and 3 € [—1,1] the asymptotic of the free energy is given by the following
formula:

f(HV)= —%In(ab) —H-

2
~oe (B 2T Zparccosp)) +Ofe ).

Proof. From the integral equation f@r(z) we can derive the largd asymptotics of the density function:

1 2Aa
The integration contour is symmetric with respect to complex conjugatienz. The contour is a small
deformation of the segment of the circle of radidf3 centered at the origin with endpoints having arguments
+ra.
For largeH the free energy function is given by

f(H,V) = min (—lna— H—(1—2a)V

0<a<1
1 b c2
o cln(aJriazz—ab)p(z)dZ)’

As H — o the density is given bya.5) and, taking into account the asymptotical description of the
contour of integration we obtain

f(H,V) = rrbin<—|na— H—V+a(2V —In(b/a))

c? —2H —4H
— e Mk(a)+Ofe )),
where q
Mgy = [ Y
e K(a)f/cw2
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This integral is easy to compute:

K(a) = sm(na).
m
The minimum occur at b
cog ) = % (2v —In(b/a))e*. (5.6)
or, at
cogma)=f3
The formulab.5) follows after the substitution of this into the expression foid,V). O

5.3 The5-vertex limit

The5-vertex model can be obtained as the limit of Gheertex model wheth — . Magnetic fields in
this limit behave as follows:

e a> b+c. Inthe parameterizatio@(2) after changing variabldd = % +I,andV = —% + mtake the
limit n — o keepingA fixed. The weights will converge (up to a common factor) to:

apiay:bribyicyicy—etHM A lTM (@ _eMydMmip:1 01

e a+c < b. Inthe parameterizatio®(3) after changing variabled = 3 +1, andV = 3 + mtake the
limit n — o keepingé = A — n fixed. The weights will converge (up to a common factor) to:

apiap:biibyiciicy— (68 —e$)dtm: ettt migf M 11

The two limits are related by inverting horizontal arrows. From now on we will focus on the 5-vertex model
obtained by the limit from the 6-vertex one whan- b+ c.

The phase diagram of the 5-vertex model is easier then the one for the 6-vertex model but still. suffi-
ciently interesting. Perhaps the most interesting feature is that the existence of the tricritical point'in the
phase diagram.

We will use the parameter

y=¢€
Notice thaty < 1.

The frozen regions on the phase diagram of3hwertex model, denoted on Fidl asA;, Ay, andBy,

can be described by the following inequalities:

A;-region: m> —I, | <0,
eM>1-y1-e?), | > 1;

Ar-region: m< —I, | <0, (5.7)
ezmgl—t(l—ez'), | >1;

Bi-region:  (é? — ! Y(e2m— 1 )> Y e > i;

1-y 1-y' = (1-y)% 1-y
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Figure 11: The phase diagram of tievertex model withy = 1/4 (8 = e~ 2").

5.4 The asymptotic of the free energy near the tricritical point in the 5-vertex model

The disordered regioD near the tricritical point forms a corner
—i/l +0(12) <m< -yl +0(1?), h—0+.
The anglef between the boundaries of the disordered region at this point is given by

2y

One can argue that the finiteness of the afgtaanifests the presence of interaction in the model. In
comparison, translationary invariant dimer models can only have cusps as such singularities.

As it follows from results HWKK] the limit from the 6-vertex model to the 5-vertex model commutes
with the thermodynamical limit and for the free energy of Bheertex model we can use the formula

fm = lim (F(n/2+1,—n/2+m)—F(n/2,-n/2)), (5.8)
whereF (H,V) is the free energy of thé-vertex model.

Theorem 5.3. Lety < k < %, and
m= —KI,
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The asymptotics of the free energy along this ray inside the corner near the tricritical point is given by

f(1,—kl) = ca(k, )l +ca(k, )12+ 0(17/3). (5.9)
where 1

alky) == -y +avky). (5.10)
and

213201 -y (Vk -1/ /y)*3
5(vk— )3 '
The proof is computational. The details can be foun@jn [

The scaling along any ray inside the corner near the tricritical point in the 6-vertex model differ from
this only by in coefficients. The exponemt? is the same. The details will be given in a separate publication.

co(k,y) = (6m) (5.11)

5.5 ThelimitA — -1~

If m= 1, the regionA consists of one point located at the origin. Wher- 0+ we haveA — —1—
andm — 1—. Moreover,K' — 1/2, K — % andwll_m) ~ 1+ 3(1—m)sirf(u). Sincecosht(x) ~
+./2(x— 1), whenx — 1+, we have

lb—aln
6p=——.
0 a+b
Since=(¢) is an odd function we obtain the following asymptoticofLW|:

=(¢) ~4e” B sin( 50 9).

In this limit the antiferromagnetic region degenerates into the ofigia 0 andV = 0 exponentially fast.
We note that the poirl =V = 0is special forlA| < 1.

5.6 The convexity
The following identity holds in the regiob [NK]:

2 2
meN—ﬁy—<m>. (5.12)

Z—éz. The constanDg does not vanish in thB-region including its boundary. It is determined

by the solution too the integral equation for the dengity)(see Appendix C).
Directly from the definition of the free energy we have

Hereg =

< (n(L) —n(R))? >
NM ’

fupu = lim
H.H N,M—00

wheren(l) andn(r) are the number of arrows pointing to the left and the number of arrows pointing to the
right, respectively.
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Therefore, the matrig;d; f of second derivatives with respectibandV is positive definite.

As it follows from the asymptotical behavior of the free energy near the boundary d@-fitease,
despite the fact that the Hessian is nonzero and finite at the boundary of the interface, the second derivative
of the free energy in the transversal direction at a generic point of the interface develops a singularity.

6. The Legendre Transform of the Free Energy

The Legendre transform of the free energy

sup{ XxH+wW + f(H,V
H7Vp( W+ f( ))
as a function ofx,y) is defined for-1 < x,y < 1.
The variablex andy are known as polarizations and are related to the slope of the Gibbs measure-as
x=2h—1andy = 2v— 1. We will write the Legendre transform of the free energy as a functiqh,o

a(h,v) :sup((Zh—l)H S (- 1)V + f(H,V)). (6.1)
HYV
o(h,v) is defined or0 < h,v< 1.
For the periodic boundary conditions the surface tension function has the following symmetries:

G(Xay) = U(y,X) = G(_X7 _y) = G(_y7 _X)'

The last two equalities follow from the fact that if all arrows are reverseid, the same, but the signs »f
andy are changed. It follows that,(h,v) = o,(v,h) andoy(h,v) = on(v, h).

The functionf (H,V) is linear in the domains that correspond to conic and corner singularities of
Outside of these domains (in the disordered doribgiwe have

Do o0f =idp, Of 0 0o = idng(p)- (6.2)

Here we gradient of a function as a mappikg— R2.

When the 6-vertex model is formulated in terms of the height function, the Legendre transform of the
free energy can be regarded as a surface tension. The surface in this terminology is the graph of of the height
function.

6.1

Now let us describe some analytical properties of the functigin v) is obtained as the Legendre
transform of the free energy. The Legendre transform maps the regions where the free energy is linear with
the slopg(£1,+1) to the corners of the unit squage= {(h,v)] 0<h<10<v<1}. For example, the
regionA; is mapped to the corndr= 1 andv = 1 and the regiorB; is mapped to the corndér= 1 and
v = 0. The Legendre transform maps the tentacles of the disordered region to the regions adjacent to the
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boundary of the unit square. For example, the tentacle betygandB; frozen regions is mapped into a
neighborhood oh = 1 boundary of7, i.e.h— 1andO0O<v < 1.

Applying the Legendre transform to asymptotics of the free energy in the tentacle betwaadB;
frozen regions we get

1I (rrab 1-h

H(hv) = =3 2 sinm(1—v)

’ ) V(h,v):%In(b/a)+g(l—h)cot(n(l—v)),

and
mrab 1—-h

a(h,v) = (1-h)In < ¢ sin(m(1—v))

Hereh — 1— and0 < v < 1. From 6.3 we see that(1,v) = vin(b/a) —In(b), i.e. o is linear on the
boundaryh = 1 of 2. Therefore, its asymptotics near the boundagy 1 is given by

>—(1—h)+v|n(b/a)—|n(b), (6.3)

o(h,v) =vIn(b/a) —In(b) + (1—h)In(1—h) +O(1—h),

ash — 1— andO < v < 1. We note that this expansion is valid whein-h) / sin(ri(1—v)) < 1.
Similarly, considering other tentacles of the regidrwe conclude that the surface tension function:is
linear on the boundary av.

6.2

Next let us find the asymptotics of at the corners o7 in the case when all points of the interfaces
between frozen and disordered regions are regular, i.e. iiherl. We use the asymptotics of the free
energy near the interface betwenandD regions|b.2).

First let us fix the pointHo,Vo) on the interface and the scaling factoin (5.2). Then from the
Legendre transform we get

3 K(Bs+t?)1/2

1—h:—ZrW(Gng+4rt)
and 12
3 K(6s+19)
1-v= o (9214 (—O0+ronat).

It follows that
1-h  604g+4rt

1-v  2(—6+rtdyg)’
In the vicinity of the boundary — 0 and, hence,

1-h  d4g 1-b/ae?"
1-v. 2 1-b/ae?b

(6.4)

ash,v— 1. Thus, under the Legendre transform, the slope of the line which approaches thehcemnerl
depends on the boundary point on the interface between the frozen and disordered regions.
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It follows that the first terms of the asymptoticsmfat the corneh = v =1 are given by
o(h,v) = —Ina—2(1—h)Ho(h,v) —2(1—Vv)Vu(h,Vv),

whereHp(h,v) andVp(h,Vv) can be found from@.4) andg(Ho, Vo) = O.
When |A| < 1 the functiono is strictly convex and smooth for &l < h,v < 1. It develops conical
singularities near the boundary.

WhenA < —1, in addition to the singularities on the boundasyhas a conical singularity at the point
(1/2,1/2). It corresponds to the “central flat part” of the free enefggee Figl8.

WhenA > 1 the functiono has corner singularities along the boundary as in the other cases. In addition
to this, it has a corner singularity along the diagonat hif a> b andv=1—hif a<b. We refer the
reader toBS] for further details on singularities af in the case wheA > 1.

7. The Thermodynamic Limit and the Variational Principle for Fixed Boundary Conditions

7.1 The Variational Principle
7.1.1

Let o be the surface tension function of tBevertex model with the periodic boundary conditions
defined in6.1). We consider the functional

I[¢]:/DU(D¢)d2x+)\/D¢d2x, (7.1)

Let h(x,y) be a minimizer of this functional on the spdc@, ¢o) of functions nondecreasing inand
y directions and satisfying the condition

¢(X7y) _¢(X/7)/) < X_X/+y_)/

and the boundary condition

¢lop = do.
Notice that height functions are Lipschitz with(x,y) — ¢ (X,y)| < 2max|x—X|,|y—¥Y|).
Proposition 7.1. The functional [¢] has unique minimizer.
Indeed, sincag is convex, the minimizer is unique when it exists. The existence of the minimizer

follows from compactness of the spdc@, ¢o) in the sup norm. The arguments are completely parallel to
those in CKP].
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7.1.2

If the vectorOh(x,y) is not a singular point ofr, the minimizerh satisfies the Euler-Lagrange equation
in a neighborhood ofx, y)
div(DooOh) = A. (7.2)

We can also rewrite this equation in the form

o (0h(x y) = 7 (%3) + (-9 (%Y), 8xY), 73)

whereg is an unknown function such thgfy(x,y) = gyx(X,y). Itis determined by the boundary conditions
for h.
Applying (6.2), we see that

A A
Dhix,y) = Of (5 X=gy(X%y), 5 ¥+ gx(x,y))- (7.4)
From the definition of the slope, se#1) we havel < fy <1and0< fy < 1. Thus, if the minimizer
his differentiable atx,y), it satisfies the constraifts< hy < 1and0<hy, <1.
7.2 Large deviations

The following statement is a minor variation of the theorem 4.3 frGidH].

Theorem 7.2. Let N — o, A be finite andg = exp(%) then the sequence of random normalized height
functionshy converges in probability to the minimizer @f.1). The rate of convergence is exponential of
N2.

The minimizer of the variational probleri.() is called thdimit shapeof the height function.
This theorem is the manifestation of the general philosophy of the large deviations principle.” The
probability of a having state with the height functibmas the has the following asymptobic— oo ;

Prob(h) ~ exp(AN? / ha?x + N2 / o(Oh)d).
D D

Here o is the surface tension function for the periodic boundary conditions. Clearly this probability has
maximum at the limit shape. States with the height function, which macroscopically differ from the limit
shape, should be expected to be exponentially improbable. The theorem states that this is exactly what is
taking place.

8. The limit [A| — o

8.1 Minimal and maximal height functions

The space of normalized height functionslagy has the partial order described in section 2. Denote
the minimal and maximal normalized height functiions with respect to this partial dftieand h™a
respectively.
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For two functionshy, ho on D define the distance
diSt(hl, hz) = Su p(eD‘hl(X) — hz(X)’ (81)

Similarly define the the distance between two functions on the bound&ry of

Let hE,N) be a sequence of functions on the boundarppafonverging togy, and such thahE,N) is a
boundary of a normalized height functionla§ m. Denoteh,(f:fg1 andhE,'}thhe minimum and maximum height
functions fromLN,M(th)). The following is clear:

Proposition 8.1. Let ¢min and ¢max be minimal and maximal height functions with the boundary condition
¢o. Then,Pmin = limy_ hﬁ"” and ¢max = limy_.. h{® with respect to the distancg.q).

The functionspmin and dmax Minimize the functionals

+ / 9 dx
D
in the saped (¢o).

Let us assume that the boundary conditions are critical, thid is piece-wise linear, non-decreasing
in x andy direction with the slop® or 1. In this case the minimum and maximum height functions are
piecewise linear functions, such that each linear part has the slope@iahgrl along coordinate axes.

We will say a point(x,y) is regular if at this point the functionpmn is differentiable. For critical
boundary conditions regular points form regions with piece-wise linear boundary where the fumgtion
has a constant slope. We will call thdimear domains

Points where the gradient ¢fy;, is discontinuous will be calledingular points. For critical boundary
conditions singular points are the points where several linear domains meefal&hey of a singular point
is the number of linear domains which meet at this point. For generic critical boundary conditions-the
valency of each critical point is at most three.

The list of all possible phases at a tricritical point of Bgertex model with generic critical boundary
conditions is given on Figl2.

8.2 The asymptotic of the minimizer when|A| — oo

Here we study the asymptotic of minimizerlgf¢] asA — +oo. It is more convenient to dividg by
|A|, so we are looking for the asymptotics of the minimikgrof

1£ 9] :Ml|/Da(D¢)d2xi/D¢d2x.

Let us focus on the limid — 4. The limit A — —oo can be treated similarly.
WhenA — 4+, the minimizeth, approaches the minimal height functipg;, described above. Let us
look for the asymptotical formula for the minimizer in a small neighborhood of a grinyo) of the form

A (%,Y) = Omin(X,Y) +/\1 Hx (A (x—%0),A (Y —Y0)),
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Figure 12: Possible phases at a tricritical point of t&ertex model.

whereH, =H +0(1) asA — +o.
Letz= (z1,2) = (1,S) = (A(X—X0),A(Y—Yo)) andx = (X1,X2) = (X,y). Becausepmin is linear, its
second derivatives vanish and we can rewrite the Euler-Lagrange equagpag

dzH)\ d%c
070z du;ou;

(Dx Pmin(X,Y) + Uz Hy (Z>) =1 (8.2)

Notice that for critical boundary conditions the functidgm, is piece-wise constant.

Now assume thdixo, Yo) is a singular point, i.e. a point where two or more linear domairgsaf meet.
Recall that for generic critical boundary conditions only two or three linear domains can meet at a point.
Taking the limitA — o in (8.2) we obtain.

Proposition 8.2. Leth, be the minimizer of;” and (xo,Yo) be a singular point, then for eadfs,t) € R?
there exits

H(r,s) = lim A (h/\ (Xo+/\L,yo+A§)—¢m‘”(Xo,yo)> (8.3)

This function is the solution to
div(Ooo (OH)) =1, (8.4)
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with the boundary conditions
H(r,s) — kir +lis (8.5)

as(r,s) — o« along a ray in tha-th linear domain adjacent t(o, o). Here(ki,li) = O@min in thei-th linear
domain and since the boundary conditions are critiégall; = 0, 1.

Conjecture 8.1. The functiorH is once differentiable. There is a smooth curve separakifignto regions
whereH is linear and regions wherkl is smooth with positive definite matrix of second derivatives.

Remark 2. For non-generic boundary conditions in the thermodynamical limit more then three linear do-
mains can met at one point. In this case one should expect that the conjecture still holds with more-then
three linear domains meeting at a singular point.

8.3 The asymptotic near double degenerate singular points
8.3.1

A height function defines the surfaze= h(x,y) in R3. Regions wheré is linear are planes. Here we
will describe the solution to the equatid®i4) with the boundary condition8(E) in the case when there are
only two asymptotic planes meeting &t yo) -

Let (ki,k2) and(l1,12) be the directions of the steepest assent of these planes. The nkpyaretk are
either0 or 1 since we assume critical boundary conditions and therdfgigis piece-wise linear with slope
(0,0),(0,1),(1,0) or (1,1).

The functionH (r,s), defined in 8.3), has the asymptotic conditior8.E)determined by these planes:
The functionH (r, s) is also invariant with respect to translationsiir= (k— |)--direction.

Thus, we are looking for a functiom such that

H(r,s) =k ((ki—l1)r+ (ko —12)s),
which satisfies the differential equatid®i4) with the asymptotic conditions(E).
Let us introduce

020

t) = kK—Di(k—1)j=—=—(u .
S( ) Lj;’z( )l( )J dUide ( ) u=(k—Dt
Then the differential equation fét becomes the first order ODE for the functieh
K'(t)S(K'(t)) = 1. (8.6)
Integrating it, we obtain the equation defining the functyf = «’(t) implicitly

Jo

i:Z,z(ki_li)fw(g(txk_'))zwc (8.7)

with some constar@.
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8.3.2

For the domain wall boundary conditions minimal and maximal height functions are shown d8Fig.
In this case the boundary between two linear domains is a line in the diréttied) for the minimal height
function and is the line in the directiqi, 1) for the maximal height function.

Thus, for these boundary conditions the functiblescribing the asymptotic of the minimizer is con-
stant in the directiofl, —1) whenA — 40 and it is constant in thél, 1)-direction if A — —oo.

LetH(r,s) = k(s+r) be the solution tcg.6) which is invariant with respect to translations in te—1)
direction. The symmetries of the Legendre transfarrof the free energy imply thati(h,v) = oy(v,h).
Using the equatior8.7) and this symmetry ofr, we obtain

Jdo
W(g(t),g(t)) =t/2+C/2.
1
Taking into accouni@.2) we obtain
gt)=0ouf(t/2+C/2,t/2+C/2) =& f(t/2+C/2,t/2+C/2)
and, hence,
K(t)=f(t/2+C/2,t/24+C/2).
In the case of two asymptotic planes we have an additional symmetsdy(ro$) with respect to the

intersection line of these planes, i.€(t) = k(—t). The free energyf also has the symmetrf(x,y) =
f(—y,—x). ThereforeC = 0 and we proved the following statement.

Theorem 8.3. For DW boundary conditions the minimizief whenA — 4 has the following asymptotic
whenx=Xo+r/A,y=—Xo+S/A:

1 r+s r+s 1
ha (X, Y) = @min+ A f <2,2) +0<ﬁ>. (8.8)
If x=Xo+r/A andy=Xp+S/A andA — —oo the asymptotic of the minimizky is given by
1 r-s r-—s 1
h (xy) = ¢min+X f (2,—2> +O<ﬁ>' (8.9)
hmin hmox

Figure 13: The minimum and maximum height functions for the DW boundary conditions.
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8.3.3

Whenc > a+ b (which is equivalent td\ < 0) the height functiorh, develops extra linear domains
known as facets. These are the regions of the antiferroelectric phase discussed irdsgctidn dimer
models this phenomenon is studiediKdS].

The facets also appear in the functidrdescribing the asymptotic of the minimizeras— oo,

For the functionH describing the asymptotic near a double singular ppigtyo) where two linear
domains meet along the diagomxat y = 0 the facet is a strip

s+t <R,

in coordinatesx =Xo+ 3,y = —Xo+ % Its widthRis given by the formula

R:\fz‘z(”zeo)‘.

In the limit A — —1— or n — 0+ the asymptotic oE gives the following asymptotical value &

R=4v2e 5 sin(’m) (1+0(n)). (8.10)
The free energyf is linear in the antiferromagnetic region. It is growing with expongfg in the

normal direction to the boundary outside of the antiferromagnetic region. This agrees with the Pokrovsky-

Talapov law which states th&tshould be growing with expone8f2 in the normal direction to the boundary

of the facet/PT]. In particular,h grows with the exponer8/2 in the (1, 1)-direction near the boundary of

the c-droplet far enough from the boundary of the square.d=erR+ 0 we have

S K
h (x0+ 3 —X0) = ho+ 5-(s— R)*2,

wherehg is the value of the height function at the boundary of the facetiaisda constant which can be
computed explicitly.

9. Conclusion

9.1 Correlation functions in the bulk

As we have seen in the previous section at the macroscopical distances in the thermodynamical limit
the height function is deterministic and is the minimizer for the variational protifeij (

But the height function at smaller distances remain random. Their fluctuations are described by the
asymptotical behavior of correlation functions in the thermodynamical limit. These asymtotics have been
studied extensively in dimer models which describeAhe 0 case of the 6-vertex model.

The thermodynamical limit of correlations functions in the bulk describes translationary invariant Gibbs
measure with given polarization. These asymptotics of correlation functions have been studied a lot using
various methods which are essentially based on representation theory of affine quantum groups.
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The exact computation of the asymptotic of correlation functions for local observable separated by large
distances on the lattice remain one of the main problems. On the other hand this is one of the most impor-
tant physically relevant information about correlation functions . Some information about this asymptotic
of correlation functions can be obtained using the arguments of finite-size scaling and the assumption of
conformal invariance of the leading terms of the asymptotic.

Let us consider the 6-vertex configurations of paths which may end at some edges. The weight of such
configurations is given the same product of weights as before. Define local obsen¢adnés; as

1, if a path going up starts &
Te(S) = { 0 :
\ otherwise

(S = 1, if a path going down starts af
10, otherwise

The value of a product of such observable when each of the factors correspond to a different edge-is the
product of values of observables.

The following formulae were obtained iBIR] for H = 0 and when all edges are vertical on the same
row using the finite-size scaling and the assumption of conformal invariance:

A Bcog2k-d
< Ogy Oy >< O >2 +@ + “zakF) +... (9.1)
. C
< TgTe >2dj+m (9.2)

Herej is the distance betwees ande;, a = 2rp(&)2. The terms denoted hy. are with higher powers
of d~2 andd~? whered is the distance between ande,. These higher order terms may also be oscillating.
Becauséd = 0 the integration contout in the integral equation frp(z) is a segment of the real line in the
additive parameterization. The constégatis the Fermi-momentum and it is also can be expressed in term
of p(z). Itis also equal to the vertical electrical polarization.

The finite size computations were extended to the ¥age0 in [NK]. They argued that the complete
spectrum of effective = 1 conformal field theory is given by

1,n?
A = Z‘r(Ejangian), nmeZz

whereg is defined by the Hessian of the free energy and is relatedasa = 2—1@]

Combining these results we conjecture that for generic electric fields the asymptotical behavior of
correlation functions is still given by formula@.@) and 0.2) with a = 2—19

One can show easily that whén= 0 we haveg = 1/4 and the asymptotic®(1) (9.2 agrees with the
results fromK] on dimer models.
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9.2 Open problems

Here we will list some open question about the 6-vertex model and other related models.

¢ Find the classification of generic singularities of limit shapes./&For1 one should expect the pres-
ence of corners as generic singularities of limit shapes.

¢ Find the scale at which fluctuations near singularities of limits shapes are described by some random
process and describe such processes. For example in dimer models such fluctuations near the bound-
ary of the limit shape are described by Airy process, and near a generic cusp are described by the
Pearcey process.

One can argue that the same processes should describe correlation functions near similar singularities
of the limit shape in the 6-vertex model but this is still a conjecture.

The scaling near the corner singularity seems particularly interesting problem since such singularities
do not appear in dimer models.

e Understand the role of integrability of the 6-vertex model in the formation of the limit shape. Here by
integrability we mean that the model can be solved by the Bethe ansatz, and that the weights ‘satisfy
the Yang-Baxter equation (and therefore transfer-matrices form a commuting family).

e The 6-vertex model is closely related to the representation theory of quantized universal enveloping
algebra of§E. It would be extremely interesting to see which aspect of the representation theory-of
this algebra naturally appear in the limit shape phenomenon and in the scaling of correlation functions
near singularities.

e The 6-vertex model has natural generalizations related to other simple Lie algebras. Configurations
in these models can be described in termsloéight functions whereis the rank of the Lie algebra.
The limit shape in this case is a surfacéRii2. It would be extremely interesting to investigate such
systems trying to answer all questions mentioned above.
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A. The Partition Function of the Inhomogeneous6-Vertex Model

Here we compute the partition function of the inhomogendsusrtex model with the periodic bound-
ary conditions applying the Bethe Ansatz method. We briefly describe the results and refer the reader to
[KBI] for the details about the method.

Bethe Ansatz method works for the inhomogeneous 6-vertex model with the follwing inhomogeneities.
One should parameteis, A2,.., Am to each row of the gritly m and parametensy, Ly,.., Un to each column
of the grid as shown on Fid4. Thus, a pair of spectral parametéhs, (1) is associated to the verték )
of the grid. Boltzmann weights assigned to this point are:

H+V

aq(i,]) = aAi —py)e Y

5 al(ia J) = a()‘i - Ilj)@
bai, ) = bk — )™, by(i, ) = O — g )e H Y

cu(i, ) = e(Ai — 1), i, J) = c(Ai — 1)

where functions(A ),b(A),c(A) describe the parameterization of Boltzmann weights of the homogeneous
model.
The patrtition function of the model with periodical boundary conditions can be written as

N
Zy=Tr[]T(A),
1

whereT is the2N x 2N row-to-row transfer matrix of the 6-vertex mod#&dx]. The raw-to-raw transfer-
matrix is the trace of the "quantum monodromy matrix":

T(Ak) =troT(Ak).

HereT is the product
T(A) = Ro1(Ak— H1) ... Ron(Ak — Hn),

TRV TRNTH

(¥

> > o> o>

Figure 14: The4-by-4 square grid with corresponding spectral parameters.
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which acts inC2 @ C2*", The matrixRo j (Ak — Hj) acts as the matrix

al()\k — ”j) 0 0 0
0 b2(Ax — pj) C1(Ak— Hj) 0
0 C2(Ak— Hj) br(Ak— Hj) 0
0 0 0 az()\k — [Jj)
in the basi®e; ® 6,61 R e, R €1, ® e, of the product of the 0-th and j-th factors in the tensor product.
It acts trivially in other factors.

Let us denote the number of arrows pointing down in a row of the grid.bRenote by(C*N), the
corresponding subspace in the space of all possible states on the raw ofNeafjtrertical edges. The
action of the transfer-matrix preserve these subspaces.

The Bethe Ansatz method gives the following result for the eigenvalu€s of

A(Aug, .. un, H V) = AL (A, ug, ..U, H V) + Ar(A, U, .., un, HL V), (A.2)
where
_ n a(u|—)\) N
AR(A, U1, .., Up, H, V) = NHEN=20V P22 ) M A — py),
( n ) v b(UI—)‘)JI:L ( J)
n )\—U) N
ALA UL . U HLV) = g NF(N-2ny = @A =) A — A2
L( U, .., Un, A, ) € L b()\_ul)ub( u])? ( )

anduy; satisfy the Bethe equations

G2NH ﬁ a(uk_ul)b(ul_uk):ﬁb(uluj) (A.3)
J

ki AU —udb(uc—u) 1) a(u — py)

It follows that the partition function of the model is given by

N
ZN,M - z |_| /\a(Ak,Ul,UZ,-wUn»HaV)'
a k=1

where/\; are the eigenvalues of the row-to-row transfer matriand the sum is taken over all eigenvalues
with their multiplicities.
Thus, in the homogeneous case whemglare the same the asymptotic of the partition function as
M — o is
Zum = dAmadN)M(1+0(1))

whered is the multiplicity of the largest eigenvalenaxN) of the row-to-row transfer-matrix oN sites .
Therefore, if we can compute the asymptotic of the largest eigenvalue of the transfer-mbkrix as
we can find the asymptotic of the partition function in the thermodynamical limit.
Strictly speaking, this logic gives the asymptotic of the partition function in the Mnit N > 1. Under
mild assumptions one can argue that the leading term of the asymptotic of free energy is uniform. However,
in some cases a resonant phenomenon may occur which will make the leading term of the asymptotic of
Zn v depend on the ratibl /M [KW].
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B. The Free Energy of the Homogeneou6-Vertex Model

In the homogeneou&vertex model the Boltzmann weights are the same for all vertices on thigrid
When|A < 1 the functionsa, b, c are:

a=psinu+n), b=psin(u), c=psin(n).

Other values ol can b obtained by analytical continuation.
The formula for eigenvalues of the row-to-row transfer matrix given in the previous section becomes

A (N) = aNgNH+(N-2nv ﬁs'”(ul_“”) + pNeNH+(N-20)V ﬁsm(ul_”—”)
1= =

sin(uj —u) sin(uj—u)
where(uy, .., U,) are solutions of the Bethe ansatz equations
sin(uj) N 0 sin(uc—uj+n)
)| e ST g,
sin(uj +n) ) sin(ug—uj—n)
K]
Introducing new variables
sin(u; , [
Zj:#a J:l’”’n’ W:L(u)
sin(u; +n) sin(u+n)
we get
A (N) = aNNHN-20V 1 1-2Aw+wz L N NH+H(N-2n)V 1 1-2Az7j+wg
JI:L Zj —W JI:L W—Zj

wherez satisfy the Bethe equations

D 1-2A7 +zj%

_ (_1\—1NH
Z' = (-1 te? ,!:lll—ZAzk+zjzk'

) (B.1)

We want to find the asymptotic of the largest eigenvalue of the transfer-matrix Mhero. We shall
do it in two steps. First we will find the asymptotic of the largest eigenvalue améfhg\l) in the limit

n
, n— oo, N o = const (B.2)

After this we will find for whichO < a < 1 this eigenvalue is the largest.

C. The 6-Vertex Model Bethe Equations

Let us denote
0w _ 1-2Az+zw

= — . C.1
1-2Aw+ zw (€1
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Then, taking the logarithm of both sides of each Bethe equaldl) &nd dividing byN, we get

n—1. i« . :
In(zj)) = ——im+2H + — Ze(Zj,ZI(>+2mkj/N, i=1,..,n, (C.2)
N N &
wherek; are integers.
All theoretical and numerical results on tBevertex model suggest that the following is true.

Conjecture C.1. In the limitN — o with a = § is fixed the roots of the Bethe equations corresponding to
the maximal eigenvalue of the transfer matrix in the subsnﬁ%)n concentrate on a smooth cur@ein
the complexz-plane. The curv€ is symmetric with respect to the complex conjugatien z.

Conjecture C.2. The maximal eigenvalue of the transfer-matrix in the subsp@t&'),, corresponds to
K= {i.

These conjectures can be proven in the free-fermion£asé.
The conjectureC.1) implies that asN — o« one should expect finite limit density af on the contour
C. If zy — ze C the limit p(z) = limMy_e m is the value of the limit densiy function of solutions
to the Bethe equations @ Let us denote the endpoints of the contGuny ¢ andé, § = limy ..z and
& =liMN_wZn.

Taking the limit in the equatiord.2) we obtain the integral equation fp(z):

: 1 z
IN(z) = 2H — ria + ET/ G(Z,W)p(w)dw+/ p(w)dw (C.3)
C ¢
Herez € C. Differentiating this equation with respectzpwe obtain another, more convenient form of this

equation:

1 1
=~4+— [K d CA4
p@) =+ 5 [ Kizwpwdw (C4)
where oA
. —w w
K(z,w) = —id,0(z,w) = - 2Az+zw+ 1T oAwrZw (C.5)
The kerneK is singular on two curves
1
C]_:{Z:Z]_(W):m‘ WG(:}7
(C.6)
1
Co={z=2(w) = —V—V+2A] we C}.
and it can be written as 1 1
K(z,w) = (C.7)

Cz—z (W) o z(w)’

Notice that functiong(w) = z;1(w), i.e. z; andz are inverse to each other.
If A =0, coutoursC; andC; coincide and the kernel is zero.
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Conjecture C.3. If A #£ 0, there are two cases:
e ConoursC,Cy, C, do not intersect each other;

e ContoursC,Cy, Cy, all intersect at two points;. = €7 which are the solutions of? — 2Aw+1 =0
and are conjugate to each other (these two points may coincide in the degenerate case). This is
possible only itr = 1.

The integral equation op(z) can be rewritten as
J1, 1 e g 11 W
PR =+ 211 Jc z— (W) dw 21 Jc z— z1(W) dw (C.8)

Notice that the contouE can be deformed as long as it does not intersect the c@vasdC,.
The contourC is defined by the condition that the forp(z)dz has purely imaginary values on the
vectors tangent t@

Re(p(z)dz)| =0, (C.9)
zeC
and by the normalization condition @r(z)
1/ (2)dz=a (C.10)
27 Cp - '
The free energy per site is defined as
. logzZym AM(N
FHV) == lim =Qqw — M, m@%snsn—y

The formula for eigenvaueAm)(N) has two terms. Each of them grow exponentially for lakge
Generically, one of the terms will dominate the other. Taking into account conjectures about roots of Bethe
equations in the thermodynamicallimit we obtain the follwoing integral representation for the free energy
[LW]:

w2 2Aw+ 1

f:min{rrbin{El—H (1-2a) V——/I = _) (z)dz},
min{E; + H —(1—2a)v—ﬁ/cln(2A—w+ W)p(z)dz}},
or
f(H,V) = min{min{E; — H - (1-2a) v—f/ - azz) (@)dz},
rr)]in{E2+H (1— Za)V——/I a2_02+ab azz)p(z)dz}},

wherep(z) is determined bythe integral equatidd.4) with conditions|C.S) and (C.10).
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D. The Free Energy in the Free-Fermion Case

The free-fermion curve in the space of parameters of the 6-vertex mofletiB. Since in this case
K(z,w) = 0 the integral equation g immediately impliep(z) = 1/z. The contouc in this case is an arc

z=eMd?, (D.1)

wheref € [—ma, ta).
Let us assume that> b. The formula/C.11) for the free energy with fixed polarizatiangives

a?+b?

fu—E1—H— (1— 2aV——/ -

de, (D.2)

Minimizing this expression i we get the equation
(A g H-V) | pR(g 2HHV _ 2H-2V)
2ab(e?V + e 2V)

This defines the critical valug> a > 1 when the absolute value of the r.h.s is not greater thédtherwise
a=0ora=1

coqgma) = (D.3)

Proposition D.1. The free energy can be written as the following double integral:

) 1 21T 2 . . .
f = Ming<g<1fa = —7/ de/ do In‘al—aze'w*‘f’) + €9+ boe?|.
== 412 Jo 0

Proof. The proof is computational. For the double integral in question we have:

2 2 . . .
/ do [~ dn(au+bre® + (b~ ap®)e?) =
0 0
0. ) -6,
2n/ d6|n(a1+b1e'9)+2n/ " dOIn(by+ axd®),
J -6, J—1+6.

where

6.=0 if |a2—b2\ >a1+b1,

6.=1m if |a1— bl‘ > ap + by,
a2+bZ—a?—b?
cogf,)=-2—2 "1 1 otherwise
S( ) 2(a1b1+a2b2)

The last equality holds ifap — by| < a; + by and|a; — bs| < az + by.
We can rewritef as

.2
by + a2e'9
al—bleie '

_ m—6,
g :8n2In(a1+b1J;a1 bl|>+2n/ de1n (D.4)

— T+ 9*
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We note that the argument of the logarithm under the integral is greated ttoarany 6 in the domain of
integration.

Taking into account the parameterization of Boltzmann weights by electric fiektsdV it is easy to
see thatD.4) together with the equation f@* coincide with the formula for the free energy derived from
the Bethe Ansatz.

O

The double integral formula can be obtained directly from the Pfaffian solution of the dimer model
which maps to the 6-vertex modelft= 0.
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