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1. Introduction

The Bethe ansatz [1] is a general tool to solve (1+1)-dimensional integrable field theories
[2 – 4]. Its use in the AdS/CFT duality might appear quite unexpected, since both sides of the
duality are not two-dimensional: the AdS/CFT correspondence relates supersymmetric Yang-Mills
theory in four dimensions to string theory in ten dimensions (the string background is the direct
product AdS5 × S5 with the constant Ramond-Ramond (RR) flux) [5]. However, first-quantized,
non-interacting strings are described by a two-dimensional field theory on their world-sheet, and in
the case of the AdS5×S5 background this theory [6] is an integrable sigma-model [7]. Integrability
in the SYM theory is more intricate and arises as a subsidiary symmetry in the mixing problem
for gauge-invariant local operators, which can be reformulated in terms of a one-dimensional spin
chain in the large-N limit [8, 9].

There is one feature of the AdS/CFT duality that clearly distinguishes it from other, more
traditional uses of the Bethe ansatz. Usually one is mostly interested in the bulk, macroscopic
quantities, such as the spectrum of excitations, thermodynamics, etc. which determine the behavior
of the system in an infinite volume. This is not sufficient in the AdS/CFT correspondence. In order
to quantize closed strings we need to impose periodic boundary conditions on the world-sheet
coordinates. The states of the spin chain parameterize single-trace composite operators and are
also naturally periodic.

It is not surprising the infinite-volume limit in the AdS/CFT context is much better understood.
Interactions are then characterized by the S-matrix, which is highly constraint by symmetries and
in integrable system in addition factorizes into two-particle blocks [10]. The non-perturbative
S-matrix of the AdS/CFT correspondence [11] is known [12] and was found by combining sym-
metries, dynamical information and a certain amount guess-work. The S-matrix determines the
common spectrum of N = 4 SYM and strings in AdS5 × S5 via Bethe ansatz equations [13],
which are exponentially accurate for sufficiently long strings/gauge operators [14, 15]. These notes
are based on [16] and are devoted to two simpler sigma-models (that have arisen in the AdS/CFT
duality) in which scattering theory completely determines the exact spectrum even if the volume is
finite.

In order to estimate the accuracy of the infinite-volume limit, let me start with the simplest
possible example: one-dimensional quantum mechanics with the potential

V (x) =
+∞

∑
s=−∞

U(x+ sL), (1.1)

where U(x) short-ranged and exponentially decays at infinity. For simplicity I will consider the
semiclassical limit (the conclusion does not change if quantum effects are taken into account ex-
actly). When periodic boundary conditions, written conveniently as Ψ(L/2)/Ψ(−L/2) = 1, are
imposed on the semiclassical wave-function

Ψ(x) ∼ exp
(

i
h̄

∫ x

−L/2
dx′
√

p2 −2mV (x′)
)

,

the momentum gets quantized according to the Bohr-Sommerfeld rule:

e iΦL(p) = 1, ΦL(p) =
1
h̄

∫ L/2

−L/2
dx
√

p2 −2mV (x) . (1.2)
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The quantization of momentum, together with the dispersion relation, determines admissible en-
ergy levels of the periodic system: ε(pn) = p2

n/2m, where {pn} are solutions to (1.2).
The summation that makes the potential periodic stands in (1.2) under the square root. Taking

the summation out and using

+∞

∑
s=−∞

∫ L/2

−L/2
dx f (x+ sL) =

∫ +∞

−∞
dx f (x)

yields an asymptotic approximation which relates the phase of the wave function in the potential
V :

ΦL(p) ≈ pL+∆(p), (1.3)

to the scattering phase shift for the potential U on an infinite line:

∆(p) =
1
h̄

∫ +∞

−∞
dx
(

√

p2 −2mU(x)− p
)

. (1.4)

The momentum quantization condition in that approximation is

e ipL = e−i∆(p). (1.5)

Its multiparticle generalization is the set of Bethe equations

e ip j = ∏
k 6= j

e−i∆(p j,pk), E = ∑
j

ε(p j), (1.6)

where ∆(p j, pk) is the scattering phase shift of the jth particle on the kth particle and ε = ε(p)

is the one-particle dispersion relation. This equation holds under an additional assumption that
the multiparticle scattering factorizes and reduces to a sequence of pairwise interactions, which is
always the case for integrable systems [10].

The accuracy of the asymptotic approximation can be estimated by comparing (1.2) to (1.3)
and (1.4):

ΦL(p)− pL−∆(p) ≈ m
h̄

∫ L/2

−L/2
dx ∑

s6=0
U(x+ sL)

(

1
p
− 1
√

p2 −2mU(x)

)

∼ e−L/R, (1.7)

where R is the range of the potential. Thus, if the potential is short-ranged, the corrections are
exponential. The cricial point for our further analysis is that in one distinguished case (1.5), (1.6)
are exact: namely, when interactions are completely localized (the potential is the delta function),
(1.7) identically turns to zero.

In quantum field theory with local interactions the potential is the delta function at tree level,
but vacuum polarization smears interactions over a finite range, which is determined by the mass of
virtual particles1: R = 1/2m. A way out is to define a reference state (the pseudovacuum) in which

1Typically, the potential is generated by pair creation. One could conclude from the discussion above that the
accuracy of the asymptotic Bethe ansatz is then e−2mL, but virtual pairs that travel around the compact direction produce
even stronger effect in the dispersion relation of a single particle and lead to finite-size corrections that scale as e −mL,
see [14] for the discussion of this effect in the context of the AdS/CFT correspondence.
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scattering is simple and the vacuum is not polarized2. An example of pseudovacuum is the empty
Fermi sea. Since draining the Fermi sea removes all anti-particles, there is no vacuum polarization.
Of course, an empty Ferminsea is a highly unphysical and unstable state. In order to reconstruct the
physical spectrum, the Fermi sea has to be refilled with particles so that no negative-energy states
are left, but this can be done with the help of the Bethe equations which in the pseudovacuum are
exact even in the finite volume. Many integrable field theories in two-dimensions can be solved this
way (Korepin’s solution of the massive Thirring model [17, 18] is a typical example of this sort)
[3, 4]. It is currently not known how to construct the pseudovacuum in string theory on AdS5 ×S5.
Hopefully finding such state will help in understanding the finite-size spectrum of the AdS/CFT
correspondence as well.

I shall describe how to define the pseudovacuum and to compute the bare S-matrix for two
sigma models that arise as truncations of string theory in AdS5×S5. The first is the non-relativistic
Landau-Lifshitz (LL) model, and the second is the string sigma-model on S3, of which the LL
models is a non-relativistic limit.

2. Landau-Lifshitz model

The macroscopic spin waves with large wave number are described in one dimension by the
LL equation [19]:

∂tni = εi jk n j ∂ 2
x nk, n2 = 1. (2.1)

The LL model is the low-energy effective theory of the Heisenberg Hamiltonian, which arises in
the AdS/CFT correspondence as the one-loop mixing matrix in the su(2) sector of N = 4 SYM
[8]. On the string side of the AdS/CFT correspondence, the LL equation describes fast-moving
strings on the R1 ×S3 subspace of AdS5 ×S5 [20] (see also the next section).

The equation (2.1) is classically integrable, but I would like to treat the LL model as a quantum
field theory3. The LL equations are first order in time derivatives, which means that ni are phase-
space variables. To formulate the path integral for the LL model one needs to introduce the Wess-
Zumino-type functional. Let me shortly review this construction, following the book [22].

The Wess-Zumino term (in this context) is defined through a non-local functional

Cq(n) = −1
2

∫ 1

0
dξ εi jk ni ∂ξ n j ∂qnk. (2.2)

For periodic boundary conditions in time direction, the WZ term can be written as a two-dimensional
integral such that the time direction is the boundary of the integration region:

∫

dt Ct(n) = −1
4

∫

D
εi jk nidn j ∧dnk. (2.3)

Since the integrand is a closed form, a local variation of n inside D does not change the WZ
functional (global variations can change the WZ action by integer multiples of 2π). The manifestly

2This is a rather loose definition. A precise notion of the pseudovacuum can be only given in the algebraic Bethe
ansatz framework [2].

3The LL field theory is a non-relativisitc non-linear sigma-model with the S2 target space. The quantum LL model
on the hyperbolic space was solved by the algebraic Bethe ansatz in [21].
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local form of the WZ action can be obtained at the price of losing manifest SO(3) invariance. If one

solves the constraint n2 = 1 for n3 =
√

n2
1 +n2

2, the integrand can be written as a total derivative

1
2

εi jk nidn j ∧dnk =
dn1 ∧dn2

n3
= d

(

n1dn2 −n2dn1

1+n3

)

. (2.4)

and thus the auxiliary integration in the WZ functional can be eliminated:
∫

dt Ct(n) =
1
2

∫

dt
n2∂tn1 −n1∂tn2

1+n3
. (2.5)

The action of the LL model is

S =
∫

d2x
[

Ct(n)− 1
4

(∂xn)2
]

. (2.6)

Variation of this action yields the equations of motion (2.1). We would like to consider it as an
action for a non-linear quantum field theory in 1+1 dimensions. The change of variables

ϕ =
n1 + in2√

2+2n3
, n3 = 1−2|ϕ|2, (2.7)

gets rid of the non-linearities in the kinetic term [23]. Performing it in (2.5), (2.6), we find:

S =
∫

d2x

{

i
2

(ϕ∗∂tϕ −∂tϕ∗ϕ)−|∂xϕ|2 − 1
4

2−|ϕ|2

1−|ϕ|2
[

(ϕ∗∂xϕ)2 +(∂xϕ∗ϕ)2]− 1
2
|ϕ|4|∂xϕ|2

1−|ϕ|2

}

.

(2.8)
This is the action of an interacting field theory of a single scalar field. Its non-relativistic character
leads to some important non-renormalization properties.

The field theory at hand describes a single non-relativistic particle with ε = p2, and we can
build perturbation theory on top of the empty state that contains no particles and is annihilated by
the field operator:

ϕ|0〉 = 0. (2.9)

The Feynman propagator will be purely retarded and will have only one pole in the momentum
representation:

D(ω, p) =
i

ω − p2 + iε
. (2.10)

This leaves no room for vacuum polarization (the vacuum is completely empty): any diagram that
contains a closed loop of ϕ vanishes (fig. 1), because poles of all propagators lie on one side of the
integration contour over ω and by contour argument the integral yields zero [19].

The above argument has three important consequences [19, 16]:

• The ground state energy is not renormalized: Evac = 0. This is consistent with the fact that
the ferromagnetic vacuum is the exact zero-energy eigenstate of the Heisenberg Hamiltonian.

• The one particle Green’s function is not renormalized. Hence, the dispersion relation ε = p2

does not receive quantum corrections.

• The two-body S-matrix is given by the sum of bubble diagrams in fig. 2.
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= 0

Figure 1: Vacuum polarization is absent in the LL model.

Figure 2: The 2 → 2 S-matrix is a sum of bubble diagrams.

These properties are almost obvious. A formal proof can be given by cutting a generic diagram and
counting intermediate propagators.

To compute the S-matrix we may truncate the non-polynomial action (2.8) at the fourth order
in the fields:

L =
i
2

(ϕ∗∂tϕ −∂tϕ∗ϕ)−|∂xϕ|2 − 1
2
[

(ϕ∗∂xϕ)2 +(∂xϕ∗ϕ)2]+O(ϕ6), (2.11)

since only the quartic vertices contribute to the chain of bubbles. The essentially non-linear nature
of the LL model turns out to be unimportant! The S-matrix can be calculated by summing the
chain of bubble diagrams as done in [16] (this calculation is very similar to the computation of
the S-matrix in the non-linear Schrödinger model [24] of Thirring model in [18]). The derivatives
in the vertices somewhat complicate the calculation, but there is a simple argument that allows to
compute the exact S-matrix in essentially no time. The argument is based on unitarity, fig. 3, and
the fact the sum of bubbles is a geometric series. The unitarity relates the bubble to the tree-level
scattering amplitude

2ipp′ (2π)2 δ (2)(pµ + p′µ − kµ − k′µ)

=
2ipp′

∂ε(p)
∂ p − ∂ε(p′)

∂ p′
(2π)2(δ (p− k)δ (p′− k′)+δ (p− k′)δ (p′− k)

)

,

which gives for the tree-level T-matrix:

T =
2pp′

p− p′
(2.12)

and since the sum of bubbles is a geometric series, we find the exact S-matrix:

S =
1+ iT

2

1− iT
2

=

1
p − 1

p′ − i
1
p − 1

p′ + i
. (2.13)

6
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_i

2
=

2

Figure 3: Optical theorem for the bubble diagram.

The Bethe equations resulting from this S-matrix are most conveniently written in terms of the
spectral variable u = 1/p:

e iL/u j = ∏
k 6= j

u j −uk + i
u j −uk − i

. (2.14)

The energy and the momentum are then given by

E = ∑
j

1
u2

j
, P = ∑

j

1
u j

. (2.15)

It is now easy to show that the reference state (2.9) is a pseudovacuum and not the true ground
state of the LL model [16]. Let us consider a bound state of two particles, which is described by a
2-string configuration of Bethe roots:

u1,2 = v± i
2

. (2.16)

This is an exact solution of the Bethe equations in the strict thermodynamic (L → ∞) limit. The
energy and the momentum of the 2-string are:

E2−string =
1

(

v+ i
2

)2 +
1

(

v− i
2

)2 =
2v2 − 1

2
(

v2 + 1
4

)2 ,

P2−string =
1

v+ i
2

+
1

v− i
2

=
2v

v2 + 1
4

. (2.17)

The momentum of the 2-string is always smaller that 2 and there are two branches of the dispersion
relation that describe two kinds of excitations

ε±(p) = p2 ±2
√

4− p2 −4. (2.18)

The two branches arise from v ≷ 1/2. The ε− branch has negative energy, so that the true ground
state is a Fermi sea of the 2-strings.

3. Faddeev-Reshetikhin model

In this section I discuss string theory on S3 ×R. We should probably explain what do I mean
by that because S3 ×R is not a string background. There are no problems with classical strings, in
fact S3 ×R can be regarded as a subspace of AdS5 ×S5, but quantization leads to UV divergences
and non-zero beta-function. Although the resulting model cannot be interpreted as string theory, it
is an interesting example of two-dimensional integrable field theory first considered in [25].

7
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The embedding the string world-sheet in the sphere can be parameterized by a group element
of SU(2), g(t,x). The time coordinate can be eliminated by imposing the temporal gauge:

X0 = κt. (3.1)

The parameter κ plays the role of the energy of the string. In terms of the left currents

ja = g−1∂ag, (3.2)

the equations of motion of the string read

∂a ja = 0,

∂a jb −∂b ja +[ ja, jb] = 0. (3.3)

In addition we should impose the Virasoro constraints:

tr j2
± = −2

(

∂±X0)2
= −2κ2, (3.4)

where ∂± = ∂t ± ∂x are the light-cone derivatives (x± = (t ± x)/2). Accordingly, j± are the light-
cone components of the su(2) current. It is this extra condition that distinguishes the Faddeev-
Reshetikhin model from the ordinary principal chiral field. The Virasoro constraints are solved
by

j± = iκS± ·σ , (3.5)

where S+ and S− are three-dimensional vectors of unit norm: S2
± = 1, which as a consequence of

(3.3) satisfy
∂±Si

∓±κε i jkS j
−Sk

+ = 0. (3.6)

The equations of motion (3.6) are very similar to the LL equation (2.1), and can be obtained
from an action with two light-cone WZ terms [16]:

S =
∫

d2x
(

C+(S−)+C−(S+)− κ
2

S+ ·S−
)

, (3.7)

where C± are defined in (2.2). We should stress that this is not the standard action of the sigma-
model on S3. It leads to a non-standard Poisson brackets between the components of the su(2)

currents [25]. The Hamiltonian and the momentum derived from this action are also non-standard,
but they do arise as the first two commuting charges in the integrable hierarchy associated with the
equations (3.3) [25, 26], in contradistinction to the standard energy and momentum of the chiral
field which have no good interpretation in terms of integrability and moreover are fixed by the
Virasoro constraints. We shall regard (3.7) as a starting point for quantization, which obviously
differs from the usual quantization of the sigma-model on S3.

To develop perturbation theory for the FR model, we perform the same change of variables as
in previous section:

φ± =
S1
± + iS2

±
√

2+2S3
±

, S3
± = 1−2|φ±|2 . (3.8)

8
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Upon this change of variables, the WZ term becomes a canonically normalized first-order action
for two complex scalar fields φ+ and φ−:

S =
∫

d2x
[

i
2
(

φ ∗
+∂−φ+−∂−φ ∗

+φ+ +φ ∗
−∂+φ−−∂+φ ∗

−φ−
)

−κ
√

(1−|φ+|2)(1−|φ−|2)
(

φ ∗
+φ− +φ ∗

−φ+

)

+κ
(

|φ+|2 + |φ−|2
)

−2κ|φ+|2|φ−|2
]

. (3.9)

This action can be cast into a very concise form if we combine φ+ and φ− into a two-component
commuting spinor:

φ =

(

φ−
φ+

)

. (3.10)

Then (3.9) becomes a Dirac-like action

S =
∫

d2x
(

iφ̄ 6Dφ −κφ̄φ − κ
2

φ̄ γµφ φ̄γµφ +O(φ 6)
)

. (3.11)

The covariant derivative contains a field-dependent chemical potential:

D0 = ∂0 − iκ − iκ
2

φ̄φ , D1 = ∂1 . (3.12)

This action describes a single charged particle and its anti-particle with the dispersion relations

ε =
√

p2 +κ2 −κ (particle) , (3.13)

and
ε =

√

p2 +κ2 +κ (anti-particle) . (3.14)

The mass gap for the particles is offset to zero by the chemical potential. The energy of anti-
particles is shifted in the opposite direction, so that anti-particles decouple at low energies and
momenta.

The low-energy theory for modes with ε � κ is the LL model. This can shown by separating
big and small components of the spinor:

ϕ =
1+ γ0

2
φ , χ =

1− γ0

2
φ . (3.15)

The Lagrangian then becomes

L = iϕ∗∂0ϕ + i χ∗∂0χ + iϕ∗∂1χ + i χ∗∂1ϕ +2κ|χ|2 +
κ
2

(

ϕ∗2χ2 + χ∗2ϕ −|χ|4
)

. (3.16)

Integrating out χ we arrive at

L = iϕ∗∂0ϕ − 1
2κ

|∂1ϕ|2 − 1
8κ

[

(ϕ∗∂1ϕ)2 +(∂1ϕ∗ϕ)2
]

+ . . . , (3.17)

which is the same as (2.11) up to rescalings of ϕ and time.

9
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There is a big difference though between the sigma-model and its non-relativistic limit. The
anti-particles that show up in loops in the sigma-model destroy simple non-renormalization prop-
erties present in the non-relativistic case. One can prevent this from happening by defining the
pseudovacuum, which is annihilated by both components of φ :

φ± |0〉 = 0. (3.18)

This condition leaves all anti-particle states empty, and consequently some of the excitations on top
of this “wrong” vacuum carry negative energy. This is the price to pay for suppressing the vacuum
polarization which allows us to compute the S-matrix by summation of the bubble diagrams. We
can subsequently find the set up Bethe equations, and then fill the vacuum to eliminate all negative-
energy levels from the spectrum.

The choice of the reference state leads to a the non-relativistic pole prescription for the propa-
gator, in which both poles (particle and would-be anti-particle) are encircled in the same direction.
The field-independent part of the chemical potential in (3.12) can then be eliminated by a shift of
the integration variable k0, after which the dispersion relations become relativistically invariant.
But interactions (through the field-dependent part of the chemical potential in (3.12)) still break the
Lorentz invariance. To treat positive and negative energy states on the same footing, it is convenient
to introduce the rapidity: p0 = κ coshθ , p1 = κ sinhθ . For positive-energy modes θ is real, while
negative energy states correspond to Imθ = π . The scattering wavefunctions for both positive and
negative energy states can be taken in the form

u(p) =
√

κ

(

e−θ/2

eθ/2

)

Again we can deduce the exact S-matrix from the tree-level scattering amplitude

T = κ

(

cosh θ+θ ′
2

sinh θ−θ ′
2

− coth
θ −θ ′

2

)

. (3.19)

By unitarity,

S(θ ,θ ′) =

1+ iκ
2

(

cosh θ+θ ′
2

sinh θ−θ ′
2

− coth θ−θ ′
2

)

1− iκ
2

(

cosh θ+θ ′
2

sinh θ−θ ′
2

− coth θ−θ ′
2

) . (3.20)

It is easy to check that in the limit of small momenta this S-matrix reduces to the S-matrix of the
LL model.

The S-matrix of the FR model is not Lorentz invariant. This is not surprising because the Vi-
rasoro constraints explicitly break the Lorentz symmetry of the originally Lorentz-invariant chiral
field. Because of the lack of Lorentz invariance the S-matrix is not a function of θ − θ ′, which
makes rapidity parametrization not the most convenient one. There is another parametrization of
energies and momenta which gives more compact expressions for the S-matrix and the Bethe equa-
tions:

coshθ =
x2 +1
x2 −1

,

sinhθ =
2x

x2 −1
. (3.21)

10
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The S-matrix takes an extremely simple form in these variables:

S(x,x′) =
x− x′− iκ
x− x′ + iκ

. (3.22)

We can now write down the Bethe equations:

exp

(

2iκLx j

x2
j −1

)

= ∏
k 6= j

x j − xk + iκ
x j − xk − iκ

. (3.23)

The states with Bethe roots in the interval −1 < x j < 1 carry negative energy. One has to fill all
negative-energy levels by constructing a non-trivial vacuum solution of Bethe equations with in-
finitely many roots. I will not discuss this procedure here, which involves UV regularization and
subsequent renormalization. For a lattice-regularized version of the model, the physical vacuum
was constructed in [25], which turns out to be a condensate of 2S-strings with S → ∞. The renor-
malized physical solution describes the quantized principal chiral field as solved in [27] by the
fermionization technique.

4. Conclusions

A common feature of the calculations presented in this paper is that they are largely insensitive
to the full non-linear structure of the sigma-models. The bare S-matrix is completely determined
by tree-level quartic vertices. On the other hand, the S-matrix completely determines the exact
solution of the model. The deep reason for that is integrability and factorization of the multi-body
S-matrix. However, the calculational simplicity and the fact that the bare Bethe equations are valid
even in the finite volume are due to the judicious choice of the pseudovacuum. I do not known a
general method to find pseudovacuum in an arbitrary integrable field theory, and construction of
such a state for the string sigma-model in AdS5 ×S5 remains an open problem.
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