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1. Introduction and Conclusions

In the last couple of years, convincing models of moduli stabilization in string theory were pro-
posed, the propotype being the KKLT scenario [1], based on the orientifolds of IIB string theory
flux compactifications [2]. One of the main problems of the KKLT scenario is the uplift of the vac-
uum energy to zero or positive values. The original proposal of using antibranes relies essentially
on nonlinearly realized supersymmetry, whereas the latter attempts [3, 4] to uplift vacuum energy
by D-terms, based on the suggestion in [5], lead generically to very heavy (close to the Planck
mass) gravitino mass. Alternative uplifting using F-terms were already studied in [7, 8, 9]. As
already stressed in [8], a generic F-type supersymmetry breaking with a supersymmetry breaking
scale TeV � ΛSUSY � MPl can naturally produce the appropriate, intermediate energy scale, for
an uplift with a gravitino mass in the TeV range. Dynamical supersymmetry breaking is certainly
the best candidate to fulfill this criterion.

Recently, Intriligator, Seiberg and Shih (ISS) proposed a simple, vector-like model with long-
lived, metastable supersymmetry breaking vacua [6], whereas the ground state is supersymmetric.
Metastable vacua have by definition a positive contribution to the vacuum energy which could
clearly realize the uplifting required in the KKLT scenario [10]. As we will see in this talk, dynam-
ical supersymmetry breaking in metastable vacua of the ISS type does achieve the goal of uplifting
the KKLT vacuum energy to zero, while keeping a TeV scale gravitino mass and therefore leading
to low energy supersymmetry. We would like to emphasize, however, that the main ingredient in
realizing the uplifting is not the metastable nature of the ISS model.

It is of great interest to couple the Minimal Supersymmetric Standard Model to our present
ISS-KKLT setup, to work out the low-energy phenomenology of the model and to compare it to
the existing works [11] based on the original KKLT uplifting prescription relying on antibranes and
nonlinearly realized supersymmetry.

The structure of this talk is as follows. In Section 2 we combine the KKLT model of moduli
stabilization in type IIB strings with the ISS model of metastable supersymmetry breaking vacuum.
We show that in this case the uplifting of the vacuum energy is naturally compatible with a TeV
gravitino mass. We discuss the effects of gauging the color symmetry in the ISS model and the
lifetime of the metastable vacuum. In Section 3 we provide some general comments about the tree-
level soft masses. We then apply the general formulæ for the specific case of the model defined in
Section 2 and work out some tree-level soft terms, showing that generically tree-level soft masses
are of the order of the gravitino mass, whereas gaugino masses can be suppressed in particular
cases.

2. Metastable vacua and moduli stabilization

The model is defined by

W = W1(T ) + W2(χ i) ,

K = −3 ln(T + T̄ ) + |ϕ |2 + |ϕ̃|2 + |Φ|2 . (2.1)

2



P
o
S
(
s
t
r
i
n
g
s
L
H
C
)
0
1
4

Moduli Stabilization and Phenomenology Emilian Dudas

In (2.1), χ i denotes collectively the fields ϕ a
i , ϕ̃ j̄

a , Φi
j̄ of the ISS model, where i, j̄ = 1 · · ·N f are

flavor indices and a,b = 1 · · ·N are color indices. Moreover, in (2.1)

W1(T ) = W0 + a e−bT ,

W2(χ i) = h Tr ϕ̃ Φ ϕ − h µ2 Tr Φ . (2.2)

Notice that the model is a straightforward combination of the ISS model of metastable supersym-
metry breaking vacua with the KKLT model of moduli stabilization. As explained in [6], the sector
ϕa

i , ϕ̃ j̄
a has a perturbative description in the free magnetic range N f > 3N. An appropriate micro-

scopic theory justifying the action (2.2 is described in [10].
As transparent in (2.1), the KKLT and the ISS sectors are only coupled through gravitational

interactions. In particular, as the ISS gauge group comes from D3 branes, the dynamical scale in
the electric theory and therefore also the mass parameter µ in the magnetic theory superpotential
(2.2) depend on the dilaton S, which we assume is already stabilized by NS-NS and RR three-
form fluxes. We believe this decoupling is instrumental in getting the uplift of the vacuum energy.
Another reason for forbidding a coupling of the dynamical supersymmetry breaking sector in the
global supersymmetric limit to the T -modulus is that it is unclear how to formulate the non-abelian
Seiberg duality for field-dependent couplings.

At the global supersymmetry level and before gauging the color symmetry, the ISS model has
a global symmetry G = SU(N)× SU(N f )× SU(N f )×U(1)B ×U(1)′×U(1)R, broken explicitly
to SU(N)× SU(N f )×U(1)B ×U(1)R by the mass parameter µ . In the supergravity embedding
(2.2), the R-symmetry U(1)R is explicitly broken. To start with, we consider the ungauged theory,
in which the SU(N) is part of the global symmetry group. At the global supersymmetry level, the
metastable ISS vacuum is

Φ0 = 0 , ϕ0 = ϕ̃T
0 =

(

µIN

0

)

, (2.3)

where IN is the N ×N identity matrix and µ � Λm, where Λm ≤ MPl denotes the mass scale asso-
ciated with the Landau pole for the gauge coupling in the magnetic theory. The first question to
address is the vacuum structure of the model. In order to answer this question, we start from the
supergravity scalar potential

V = eK
[

(K−1)i j̄DiW D j̄W̄ − 3|W |2
]

+
1
2

(Re fa) D2
a , (2.4)

where Re fa = 1/g2
a define the gauge couplings. By using1 (2.1)-(2.2), we find

V =
eχ̄īχ i

(T + T̄)3

{

(T + T̄)2

3

∣

∣

∣

∣

∂TW −
3

T + T̄
W

∣

∣

∣

∣

2

+∑
i

∣

∣∂iW + χ̄īW
∣

∣

2
− 3|W |2

}

. (2.5)

Since µ � MPl, the vev’s in the ISS model are well below the Planck scale. Then an illumi-
nating way of rewriting the scalar potential (2.5) is to expand it in powers of the fields χ i/MPl, in

1The gauge D-term contributions do not exist in the ungauged case we are discussing in this section and will play
essentially no role in the following sections.
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which case it reads2

V =
1

(T + T̄ )3 VISS(χ i, χ̄ī) + VKKLT(T, T̄ ) +
χ̄īχ i

M2
Pl

V1(T, T̄ )

+
1

M3
Pl

[

W2(χ i) V2(T, T̄ )+ χ i∂iW2 V3(T, T̄ ) + h.c.
]

+ · · · , (2.6)

where by comparing (2.6) with (2.5) we can check that V1 ∼ m2
3/2M2

Pl, and V2,V3 ∼ m3/2M3
Pl, where

as usual m2
3/2 = |W |2 exp(K). Notice that the contribution to the vacuum energy from the ISS sector,

in the global limit, is
〈VISS〉 = (N f −N) h2 µ4 . (2.7)

Since we are interested in small (TeV scale) gravitino mass, it is clear that the first two terms in the
rhs of (2.6), VISS and VKKLT, are the leading terms. Consequently, there should be a vacuum very
close to an uplift KKLT vacuum 〈T 〉= T0 and the ISS vacuum 〈χ i〉= χ i

0. The KKLT uplift vacuum
at the zeroth order T0 is defined as the minimum of the zeroth order potential ∂T0V0 = 0, obtained
by inserting the ISS vacuum (2.3) into the supergravity scalar potential

V0 =
1

(T + T̄ )3

[

(T + T̄)2

3
|DTW1|

2 −3|W1|
2 +h2(N f −N)µ4

]

. (2.8)

In the limit bT � 1 and for zero cosmological constant, a good approximation for T0, considered
to be real in what follows, is provided by

W0 +
ab(T0 + T̄0)

3
e−bT0 = 0 . (2.9)

Notice that in this case T does contribute to supersymmetry breaking3

FT ≡ e
K
2 KTT̄ DTW '

a

(T0 + T̄0)1/2
e−bT0 , (2.10)

but by an amount suppressed by a factor of 1/b(T0 + T̄0) compared to the naive expectation.
The cosmological constant at the lowest order is given by

Λ = VKKLT(T0, T̄0) +
(N f −N)h2µ4

(T0 + T̄0)3 , (2.11)

which shows that the ISS sector plays the role of an uplifting sector of the KKLT model. In the
zeroth order approximation and in the large volume limit b(T0 + T̄0)� 1, we find that the condition
of zero cosmological constant Λ = 0 implies roughly

3 |W0|
2 ∼ h2 (N f −N) µ4 . (2.12)

If we want to have a gravitino mass m3/2 ∼W0/(T0 + T̄0)
3/2 in the TeV range, we need small values

of µ ∼ 10−6 − 10−7. Since µ in the model [6] has a dynamical origin, this is natural. Moreover,

2In most of the formulæ of this letter, MPl = 1. In some formulæ, however, we keep explicitly MPl.
3Notice that the leading order expression for W0 in (2.9) is not enough for computing FT , since the subleading terms

neglected in (2.9) are needed as well. FT can be computed directly, however, by keeping the leading terms in the eq.
∂TV = 0.
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the metastable vacuum of [6] has a significantly large lifetime exactly in this limit, more precisely
when ε ≡ (µ/Λm) � 1. Therefore, a light (TeV range) gravitino mass is natural in our model and
compatible with the uplift of the cosmological constant. We believe that this fact is an improvement
over the D-term uplift models suggested in [5] and worked out in [4].

Notice that supergravity corrections give tree-level masses to the pseudo-moduli fields of the
ISS model. As explained in more general terms in [6], these corrections are subleading with respect
to masses arising from the one-loop Coleman-Weinberg effective potential in the global supersym-
metric limit. This can be explicitly checked starting from the supergravity scalar potential (2.5) and
expanding in small fluctuations around the vacuum (2.3) to the quadratic order.

2.1 Gauging the model : infrared description

In the ISS model, the SU(N) symmetry is gauged and corresponds to the gauge group of the
magnetic theory. In the electric description, the ISS model is the supersymmetric QCD with Nc

colors and Nc < N f < 3Nc/2 quark flavors Q, Q̃ such that in the magnetic description with the
gauge group SU(N f −Nc), the number of flavors is large N f > 3N, where the magnetic theory is
in the infrared-free phase. In this case the perturbative magnetic description, around the origin in
field space, is reliable. The electric theory has a dynamical scale Λ and a mass term for the quarks
W = m j̄

i QiQ̃ j̄. There are Nc vacua described by

Mi
j̄ = (

1
m

)i
j̄ (det m)

1
Nc Λ

3Nc−Nf
Nc . (2.13)

The perturbative treatment in the magnetic description translates into the constraint ma �Λ, where
a denotes here the number of light mass eigenvalues, which has to be equal or larger to N f + 1 in
order for the metastable vacua to exist.

Denoting by Λm the Landau pole of the magnetic theory, according to ISS, for arbitrary vev’s
of Φ the quark flavors become massive and can be integrated out. By doing this and by coupling
the resulting low-energy system to the KKLT model, we get a lagrangian described by

W = W0 + a e−bT + N

(

hN f detΦ
ΛN f −3N

m

)1/N

− h µ2 TrΦ ,

K = −3 ln(T + T̄) + Φ̄Φ . (2.14)

Similarly to the global supersymmetry analysis of ISS [6], this action has N f −N supersymmetric
vacua, which in the global limit are given by

〈hΦ〉 = Λmε2N/(N f −N) IN f = µ
1

ε (N f−3N)/(N f −N)
IN f , (2.15)

where ε ≡ µ/Λm. The vacuum in the T -direction is simpler to describe by replacing the vev’s
(2.15) in the superpotential (2.14). By doing this, we get an effective superpotential

Weff = W0 −
(N f −N)µ3

ε (N f−3N)/(N f −N)
+ a e−bT . (2.16)

Since W0 < 0 in the KKLT model, the effect of the supersymmetric Φ vev’s is to increase the
absolute value of the (negative) constant in the superpotential. The values of the minimum for T

5
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and the corresponding negative cosmological constant are given approximately by

a b e−bTs +
3

Ts + T̄s

(

W0 −
(N f −N)µ3

ε (N f−3N)/(N f −N)

)

' 0 ,

V0 ' −
3

(Ts + T̄s)3

∣

∣

∣

∣

W0 −
(N f −N)µ3

ε (N f −3N)/(N f −N)

∣

∣

∣

∣

2

. (2.17)

The supersymmetric ISS vacuum is therefore AdS.
Notice that for W0 � µ3/ε (N f −3N)/(N f −N), we get Ts ∼ T0, with T0 defined in (2.9), since in

this case W 'W0. If W0 � µ3/ε (N f −3N)/(N f −N), then Ts < T0.

2.2 Lifetime of the metastable vacuum

The model we discussed in this paper has one metastable vacuum and two type of AdS su-
persymmetric minima. The metastable vacuum will tunnel to the supersymmetric AdS minimum
(2.15)-(2.17). The purpose of this section is to provide a qualitative estimate of the lifetime of the
metastable minimum, following [12],[13]. The bounce action is expected to come from the path in
field space of minimum potential barrier between the metastable supersymmetry breaking vacuum
and the supersymmetric vacua. Along this path, the bounce action cannot be computed analytically.
For a triangular idealized approximation [13], the bounce action Sb is qualitatively

Sb ∼
(∆χ)4

∆V
, (2.18)

where ∆V is the (minimum) barrier along the bounce and ∆χ is the variation of the relevant field.
For the tunneling between the metastable ISS vacuum (2.3) and the supersymmetric one (2.15)
after gauging SU(N), there are two cases. If µ � ε (N f−3N)/(N f −N)MPl, we get

h ∆Φ ' µ
1

ε (N f −3N)/(N f −N)
, ∆V ∼

3
(Ts + T̄s)3 |W0|

2 . (2.19)

Then, by using the condition (2.12) for a zero vacuum energy in the metastable vacuum, we get

Sb ∼
(Ts + T̄s)

3

ε4(N f −3N)/(N f −N)
� 1 , (2.20)

which increases the lifetime of the metastable vacuum compared to the similar ISS analysis. The
reason is that the energy difference between the metastable and the AdS supersymmetric minimum
is decreased by the factor 1/(Ts + T̄s)

3, resulting in an increase in the bounce action Sb. In the
case where µ � ε (N f−3N)/(N f −N)MPl, the vacuum energy of the supersymmetric vacuum (2.17) and
consequently ∆V change. The bounce action in this case is

Sb ∼
M2

Pl

µ2

(Ts + T̄s)
3

ε2(N f −3N)/(N f −N)
� 1 . (2.21)

The metastable minimum could also tunnel to other AdS supersymmetric minima [10]. Even by
taking seriously the effective theory analysis in this case, we notice that generically the AdS super-
symmetric minima are far away in the Φ field space from the ISS-KKLT metastable vacuum (2.3),
(2.9). The tunneling probability to go to the AdS vacua is highly suppressed and irrelevant for all
practical purposes.

6
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3. Soft terms and mass scales

3.1 General tree-level formulæ

The relevant couplings for our present discussion are the following terms in the Kähler poten-
tial and the superpotential arising from the perturbative expansion in the matter fields M I

K → K + [(T + T̄)nI ZIJ̄ + · · ·] MIM̄J̄ + · · · ≡ K +KIJ̄MIM̄J̄ ,

W → W +
1
6

WIJK MI MJ MK , (3.1)

where · · · denote couplings to other (hidden-sector, messengers in gauge mediation models, etc)
fields. In a manifestly supersymmetric approach, with both F and D-term contributions, the condi-
tion of zero cosmological constant is

Kαβ̄ FαF β̄ +∑
a

(g2
a/2)D2

a = 3m2
3/2M2

Pl , (3.2)

where α , β̄ refer to fields contributing to supersymmetry breaking and a is an index for anomalous
U(1) gauge factors. Then the most general formulæ for soft terms of matter fields4 MI (F I = 0),
are given by [3] for the heterotic strings case)

m2
IJ̄ = m2

3/2 KIJ̄ − Fα F β̄ Rαβ̄ IJ̄ − ∑
a

g2
aDa(

1
2

KIJ̄ −∂I∂J̄)Da ,

AIJK = m2
3/2 (3∇I∇JGK +Gα∇I∇J∇KGα)−g2

aDa(
Da

2
∇i∇ jGk −∇i∇ j∇kDa) ,

Ma
1/2 =

1
2
(Re fa)

−1 m3/2 Gα ∂α fa , (3.3)

where G = K + ln |W |2, Gα = ∂α G, ∇IGJ = GIJ −ΓK
IJGK , etc., where Rαβ̄ IJ̄ = ∂α ∂β̄ KIJ̄ −

ΓM
αI KMN̄ΓN̄

β̄ J̄
is the Riemann tensor of the Kähler manifold and ΓM

αI = KMN̄∂αKN̄I are the Christof-
fel symbols. Moreover,

Da = Xa
I MI∂IK −

ηα
a

2
∂α K . (3.4)

In (3.4), Xa
I denote U(1)a charges of charged fields MI , and ηα

a are defined by the nonlinear gauge
transformations of the moduli fields under (super-)gauge fields transformations

Va →Va + Λa + Λ̄a , Tα → Tα + ηα
a Λa . (3.5)

By using (3.4), we can also write the scalar masses in (3.3) as

m2
IJ̄ = m2

3/2 KIJ̄ −Fα F β̄ Rαβ̄ IJ̄ − ∑
a

g2
aDa(

1
2

Da −Xa
I − vlX

a
l ∂l +

ηα
a

2
∂α) KIJ̄ , (3.6)

where vl are vev’s of charged scalar fields zl with charge X a
l .

4We don’t write the analytic bilinear soft terms, since their discussion depends on the origin of the corresponding
(µ-like) term in the superpotential.
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3.2 Soft terms with dynamical F-term uplifting

A particularly important question is the magnitude of the soft terms in the visible sector in the
present setup. In order to answer this question, we first estimate the contribution to supersymmetry
breaking from the various fields. By using the results of section 2, we find in the leading order

Fϕ ≡ eK/2 Kϕϕ̄Dϕ W ' eK/2 Kϕϕ̄ (ϕ̄0W + δΦ ∂Φ∂ϕW2) ' 0 ,

F ϕ̃ ' 0 , FΦ = eK/2

(

0 0
0 −hµ2IN f −N

)

,

FT '
a

(T0 + T̄0)1/2
e−bT0 ' −

3
b

m3/2 . (3.7)

Notice that the main contribution to supersymmetry breaking comes from the magnetic mesonic
fields Φ, which are the main responsible for the uplift of the vacuum energy

Tr(|FΦ|2) ' 3 m2
3/2 . (3.8)

The transmission of supersymmetry breaking in the observable sector depends on the couplings of
the observable fields MI to the SUSY breaking fields Φ, T . The relevant couplings for our present
discussion are the following terms in the Kähler metric of the matter fields M I

KIJ̄ = (T + T̄)nI ZIJ̄ +Tr(|Φ|2) Z′
IJ̄ , (3.9)

where the form of the Φ coupling in the Kähler metric is dictated by the diagonal SU(N f ) flavor
symmetry left unbroken by the mass parameter µ in the ISS lagrangian. The Yukawa couplings
WIJK could also depend on T and Φ.

Then from (3.3) with no D-term contributions Da = 0, we find that the FT contribution is
subleading by a factor 1/b2(T + T̄ )2 with respect to the other contributions. This has the nice
feature that the flavor-dependent FT contribution to scalar soft masses are subleading. The result
for the (canonically normalized scalars) soft masses, at the leading order, is then given by

m2
IJ̄ = m2

3/2 δIJ̄ +
h2(N f −N) µ4

(T + T̄)3 (K−1Z′)IJ̄

' m2
3/2

(

δIJ̄ + 3 (K−1Z′)IJ̄

)

. (3.10)

If the coupling to the mesonic fields Φ is small, i.e the coefficients Z ′
IJ̄ are suppressed, soft scalar

masses in the observable (MSSM) sector are universal and are similar with the ones obtained in the
“dilaton-dominated" scenario in the past. It would be very interesting to find physical reasons of
why Z′

IJ̄ are small. The geometrical sequestering cannot be invoked in this case, since the matter
fields M and the mesons Φ do not fit into the peculiar sequestering structure. If the coeff. Z ′

IJ̄ are of
order one, the two terms in (3.10) are of the same order and the flavor problem of gravity mediation
is back.

A similar conclusion holds for the other possible source of flavor violation, the A-terms. If
the couplings of the mesons to the matter fields are small, we get at the leading order, for the
canonically normalized scalars

AIJL ' 3 m3/2 wIJL , (3.11)

8
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where wIJL are the low-energy Yukawa couplings for the matter fields, related to the corresponding
SUGRA couplings WIJL = ∇I∇J∇L W by

wIJL = eK/2 (K−1/2)I′
I (K−1/2)J′

J (K−1/2)L′

L WI′J′L′ . (3.12)

Since A-terms are proportional to the Yukawa couplings, there are no flavor violations in this case.
Gaugino masses in the observable sector are determined by the gauge kinetic functions which

in our case have generically the form

fa = f (0)
a + αaT + βa (TrΦ) , (3.13)

where f (0)
a are provided by other moduli fields, stabilized in a supersymmetric manner. The form

of coupling to the mesons in (3.13) is fixed by the diagonal SU(N f ) flavor symmetry left unbroken
by the mass parameter µ , whereas αa are numbers of order one5. The gaugino masses

Ma = αaFT + βa (TrFΦ) (3.14)

are of the order of the gravitino mass if βa are of order one, whereas they are suppressed by the
factor 1/b(T + T̄ ) if βa are small. In this second case, the anomaly-mediated contributions are
comparable to the tree-level ones. To conclude, we do not find a suppression of all the soft terms
in the observable sector with respect to the gravitino mass. Therefore our results point towards a
gravity-mediation type of supersymmetry breaking in the hidden sector, which in the case of small
couplings of matter to hidden sector mesons are very similar to the dilaton-domination scenario
and are therefore flavor blind at tree-level6 .

We would like to briefly compare these results to the ones obtained in [11] by using the original
KKLT uplifting mechanism with D3 antibranes. By using a nonlinear supergravity approach, [11]
found a (moderate) hierarchy m3/2 ∼ 4π2mso f t . Let us try to understand better the difference with
our results. As we discussed in the previous section, there are three ways of suppressing the tree-
level soft masses for matter fields. The first is no-scale type models. The KKLT-type models are not
of this type, since the FT contribution is small. The second case is the dominant D-term breaking.
This is probably the manifestly supersymmetric case which should correspond in the low energy
limit to the analysis done in [11]. Knowing that pure D-term supersymmetry breaking does not
exist, it could be difficult to realize a model along these lines. It is however very interesting to
investigate this possibility in more detail.

We believe that a more detailed phenomenological analysis of the possible manifestly super-
symmetric uplifting mechanisms deserves further investigation.
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