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In the present talk, we will discuss a six dimensional mass generation for the neutrinos. The
SM neutrinos live on a 3-brane and interact via a brane localised mass term with a Weyl singlet
neutrino residing in all the six dimensions. We present the physical neutrino mass spectrum and
show that the active neutrino mass and the KK masses have a logarithmic cut-off dependence at
the tree level. This translates in to a renormalisation group running of ν-masses above the KK
compactification scale coming from classical effects without any SM particles in the spectrum.
This could have effects in neutrinoless double beta decay experiments.
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1. In a nut shell

Extra dimensional models have become quite popular in the past few years with the realisation
that they could exist at far lower scales compared to the Planck scale, Mpl , and thus they could
have an impact at the TeV scale physics [1, 2, 3]. Some of the significant implications could be for
the gauge coupling unification [4], solutions to the hierarchy problem [1, 3] each having its own
phenomenological impact like for example, collider searches [6] and precision measurements of
standard electroweak parameters [5].

The existence of the extra spacetime dimensions at some scale closer or higher than the weak
scale also gives much scope to build models related to fermion masses and mixings, particularly
for light neutrinos [7], qualitatively rather different from the traditional 4D seesaw mechanism [8].
In this case, a singlet neutrino (right handed) could be allowed to propagate in the bulk whereas
the SM (left-handed) neutrino would be confined to the 3-brane, leading to new possibilities of
neutrino masses and mixing [9, 10, 11]. While this possibility has been explored in detail both in
model building as well as in terms of phenomenological analysis [12], most of these studies have
been confined to the case where there is only one additional dimension. It is necessary to extend
these analysis for higher number of extra dimensions. This is because new features could arise in
higher dimensional field theories which could give rise to different phenomenology. In particular,
interesting 6D models have been constructed to break the electroweak symmetry through non-
trivial Wilson lines [13], to guarantee the proton stability up to dimension fifteen operators [14], to
predict the number of chiral generations [15], to provide a dark matter candidate [16], to construct
realistic GUT models [17] etc. 6D models have also been constructed to reproduce the neutrino
mass spectrum [18].

In the present talk, I will discuss about our work[19] where we have studied the case of neu-
trino masses in a six dimensional model. In six dimensional models, it has been known for some
time that orbifold compactification produces some peculiar properties such as ‘tree level’ renor-
malisation of coupling constants [20, 21]. While this has been known for the scalar case for some
time, we have studied this property in detail for the case of neutrinos with a brane localized mass
term on a T 2/Z2 orbifold. We found that the physical neutrino mass (and also higher Kaluza–Klein
modes) have a logarithmic divergence related to the brane thickness.

The interpretation of this result is similar to the brane-localized scalar mass term discussed
in [21] and it can be renormalised in a similar manner by adding a neutrino Dirac mass brane
counterterm. As a result, the neutrino mass runs, more precisely increases with energy, above the
compactification scale R−1, where for simplicity we consider the case of two equal radii. For radii
in the eV to MeV range, the effect of this classical running has no counterpart in four dimensions,
since it arises without the presence of any new particle charged under the Standard Model gauge
group. This can be tested in processes with off-shell neutrinos, like the neutrinoless double beta
decay, where the increase in the neutrino mass at GeV energies enhances the amplitude of the
process.

2. The Setup

We have considered a six dimensional space, the two extra dimensions being compact. The
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compact space is orbifolded on T 2/Z2, which acts as an reflection (y1,y2) → (−y1,−y2), with yi
representing the two extra dimensions. This orbifold has four fixed points. These and correspond-
ing Z2 transformations of the coordinates around the fixed points are summarised as:

y1 →−y1 y1 →−y1 +2πR1 y1 →−y1 y1 →−y1 +2πR1
y2 →−y2 y2 →−y2 y2 →−y2 +2πR2 y2 →−y2 +2πR2

(0,0) (πR1,0) (0,πR2) (πR1,πR2).

(2.1)

Finally, lets also note that in complex notation, the action of Z2 on the compact space is a two-
dimensional π rotation, Z2(y1 + iy2) = eiπ (y1 + iy2).

2.1 The scalar case

Before proceeding to the neutrino case, its instructive to study the scalar case as it is much
easier to understand the physics. Further, as a starting point, let us set the bulk mass to zero and
add a localized mass term at the origin of the 2D compact space. The corresponding action reads1 :

S =
1
2

∫

d4xd2y
(

(∂ MΦ)(∂MΦ)−h2 Φ2δ 2(y)
)

, (2.2)

where h2 > 0 is a dimensionless coupling in the natural 6D units for which the scalar field Φ has
dimension two. The coupling h2 is localized at the origin of the compact space. The field equation
is free in the bulk and has a delta function source at the origin

∂M∂ MΦ+h2Φδ 2(y) = 0 . (2.3)

The KK spectrum and eigenvalues:
If the scalar field Φ is even under the orbifold action, it can be decomposed on a complete

basis formed by the cosine functions:

Φ(x,y) = ∑
(k1,k2)∈I

〈y1,y2|k1,k2〉φ(k1,k2)(x) (2.4)

with

〈y1,y2|k1,k2〉 =
1

√

2π2R1R2

cos
(

k1
R1

y1 + k2
R2

y2

)

√

2δk10 δk20
, (2.5)

The indices k1,2 belong to the set I

I = {(0;0),(1 . . . ∞;0),(0;1 . . . ∞),(1 . . .∞;1 . . .∞),(1 . . .∞;−∞ . . .−1)} . (2.6)

The scalar action (2.2) then takes the following form after integration over the two extra dimensions

L = Lkin −
1
2 ∑

(k1,k2)∈I

(

k2
1

R2
1
+

k2
2

R2
2

)

φ 2
(k1,k2)

− m̄2

2

(

∑
(k1,k2)∈I

√
2

√

2δk10 δk20
φ(k1,k2)

)2

, (2.7)

1We are using a (+,−,−,−,−,−) metric. The index M denotes bulk coordinates and runs from 0,1,2,3,5,6, while
µ = 0,1,2,3 denotes brane coordinates.Finally, ∂1,2 is a short-handed notation for ∂y1,2

3



P
o
S
(
s
t
r
i
n
g
s
L
H
C
)
0
2
4

6D Neutrino Running Sudhir Vempati

where
m̄2 ≡ h2

4π2R1R2
(2.8)

is the naive (volume suppressed) four dimensional lightest scalar mass, which is typically of the or-
der and slightly smaller than the compactification mass scale. The mass term of the 4D action (2.7)
is

Lmass = −1
2 ∑

(k1,k2),(p1,p2)∈I

φ(k1,k2) M
2
(k1,k2),(p1,p2)

φ(p1,p2) (2.9)

with the mass matrix given by

M
2
(k1,k2),(p1,p2)

=
2m̄2

√

2δk10 2δk20
+

(

k2
1

R2
1
+

k2
2

R2
2

)

δk1,p1 δk2,p2 . (2.10)

The diagonalization of this mass matrix will define the KK mass eigenstates. The eigenvalues and
eigenvectors of the mass matrix (2.10) are given by the characteristic equation

M
2Ψm = m2Ψm, (2.11)

where m2 represents the eigenvalues and Ψ is the eigenvector in the basis |k1,k2 〉(k1,k2)∈I defined
in the previous section (Ψ(k1,k2) = 〈k1,k2|Ψm〉 ). This leads to the eigenvalue equation after some
algebra:

1
m̄2 =

∞

∑
k1,k2=−∞

1
m2 − k2

1/R2
1 − k2

2/R2
2

. (2.12)

Note that, here, the sums have been conveniently rewritten from ki = −∞ to +∞. From this equa-
tion, we can obtain an estimate for the lightest eigenvalue in the large radii limit (m < R−1). This
is given by :

1
m2 = 4π2R2

c

(

1
h2

+
1

4π
ln(Λ2R2

c)

)

, (2.13)

where we have introduced the logarithmic cut-off Λ and also considered equal radii limit for sim-
plicity R1 = R2 = Rc, Rc denoting the compactification radius. The interpretation of the loga-
rithmic divergence in the sum, which in turn enters our eigenvalue equation can be understood by
realising that the brane localised couplings do run in the sense of four dimensional renormalisa-
tion group running[20, 21]. The coupling h2 is interpreted as the value of the coupling at the high
cut-off scale, Λ. For energies lower than the cut-off scale and larger the compatification scale, the
running of the mass eigenvalue can be observed. Below the compactification scale, there is no
running present and the eigenvalue just takes a constant profile in energy.

3. The Case of the Neutrino in 6D

Let us now concentrate on the case of a neutrino in a 6D bulk with a brane localised mass term.
As we will see soon, the eigenvalue equation in this case will reduce to the one we have already
encountered in the scalar case. Before deriving the eigenvalues, let us first describe our framework
in more detail. We will assume that the Standard Model fermions are restricted to the 4D brane
whereas a singlet 6D Weyl neutrino is free to propagate in the full six dimensional space. In 6D,
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the Weyl fermion is an eight component spinor. Decomposing it into two four-component 4D Weyl
spinors, the orbifold Z2 action becomes

Ψ =

(

λ1
λ2

)

, Z2λ1(y) = λ1(−y), Z2λ2(y) = −λ2(−y) . (3.1)

This allows us to write a brane localized coupling between the SM left-handed neutrino and the
even fermion λ1:

∫

d4x (h ν̄Lλ1(y = 0)H +h.c.) , (3.2)

where H is the 4D Higgs field and h is the Yukawa coupling. The mass dimensions of Ψ,νL,H are
respectively 5/2,3/2 and 1. Written in two-component spinor notations, the 6D lagrangian takes
the form :

L = −iλ1 σ µ ∂µ λ̄1 − iλ2 σ µ ∂µ λ̄2 +λ1 (∂5 + i∂6)λ2

−λ̄2 (∂5 − i∂6) λ̄1 +g2(νLλ1 + ν̄Lλ̄1)δ 2(y) , (3.3)

where, we have now introduced g2 = h〈H〉 the brane-localized ‘Dirac’ neutrino mass parameter
which actually, in analogy with the scalar case, is a dimensionless parameter. One can easily com-
bine the first order equations of motion from the above lagrangian eq.(3.3) to obtain an uncoupled
second order differential equation that is nothing but the Klein–Gordon equation in 6D:

(

∂µ ∂ µ −∂ 2
5 −∂ 2

6
)

λ1(x,y)+g2
2 λ1(x,y) δ 2(y) = 0 (3.4)

and therefore our fermionic problem with brane localized Dirac mass term is reduced to the one
of the bulk scalar field with brane localized mass term studied in the previous section. Infact, pro-
ceeding in the similar manner as in the scalar case, i.e, by using the KK reduction of the fermionic
fields, we can explicitly derive the resultant eigenvalue equation, which has the same form as the
one for the scalar case:

1
m̄2 =

∞

∑
k1,k2=−∞

1
m2 − k2

1/R2
1 − k2

2/R2
2

. (3.5)

3.1 Majorana Case

In the previous subsection, we have concentrated on the case where the neutrinos are of Dirac-
type. Let us now consider the Majorana case which requires violation of lepton number. Note that
there are two ways to break the lepton number : (a) Breaking the lepton number on the brane by
introducing on the brane a lepton number violating mass term for the singlet neutrino; (b) Breaking
the lepton number in the bulk through a bulk Majorana mass for the singlet neutrino. We will
directly present the eigen value equations of these two cases in the following. Let us first study the
case (a) and let us add the lepton number violating mass term M0 on the brane

∫

d4x d2y (M0 λ1λ1 +h.c) δ 2(y) . (3.6)

Notice that actually from a 6D perspective M0 has mass dimension −1, whereas after the KK
expansion the physical mass parameter is M0/(4π2R1R2). Similar to the Dirac mass considered
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previously, all phases in the Kaluza–Klein complex masses can be redefined away and have no
physical meaning. By a straightforward generalisation of the previous diagonalisation, we find the
eigenvalue equation

1
m̄2 +mM0/(4π2R1R2)

=
∞

∑
k1,k2=−∞

1
m2 − k2

1/R2
1 − k2

2/R2
2

. (3.7)

By considering again for simplicity the case of two equal radii R1 = R2 = Rc and evaluating as
before the double sum by keeping the leading IR and UV contributions, we find in the large radii
limit

1
m2 = 4π2R2

c

(

1
g2

2 +mM0
+

1
4π

ln(Λ2R2
c)

)

. (3.8)

The natural interpretation is again in terms of the running of the physical mass

1
m2(µ)

=
4π2R2

c
(g2

2 +mM0)(µ)
. (3.9)

The case of the brane Majorana mass is the simplest but also the most problematic, since due
to the double volume suppression the lepton number violation, is small. The case of the bulk
Majorana mass M is more subtle. First of all, a standard Majorana, Lorentz invariant mass in
6D, Ψ̄CΨ cannot be written for a Weyl fermion, since it mixes 6D Weyl fermions of opposite
chiralities. On the other hand, a Majorana mass term involving only a 6D Weyl fermion, of the
form Ψ̄CΓ6Ψ can be written, at the expense of breaking the 6D Lorentz symmetry which could
be considered as being spontaneously generated by the vev of some vector field. In this case,
it is not possible anymore to eliminate the phases in the KK masses by field redefinitions, even
for real Majorana mass. Interestingly enough, the interplay between Kaluza–Klein masses and
bulk Lorentz violating Majorana mass generates CP violation. This observation could be related
to previous proposals to relate the CP symmetry to discrete subgroups of a higher-dimensional
Lorentz group. The eigenvalue equation in this case is

g2
2

4π2R1R2

∞

∑
k1,k2=−∞

1
m−M− ik1/R1 + k2/R2

= m . (3.10)

Let us now try to see the significance of the logarithmic running with some realistic numbers.
Fig. 1 plots the running of the neutrino mass-squared with the energy for the Dirac case. We
have taken the radii to be of the order of 1 eV−1 with the fundamental Planck scale M? taken
to be around 100 TeV, in order to recover the 4D Planck scale MP through the standard relation
R1R2M4

? = M2
P [1]. Note that these numbers are close to the present limits from cosmology on

the size of two large extra dimensions. The coupling g2 is set to one at the cutoff (microscopic)
scale. From the figure, we see that the neutrino mass changes by at least a factor of 3 while running
with the radius. Below R−1, there is no logarithmic running anymore and the masses keep their
values at the compactification scale. This explains the horizontal line below R−1. We interpret
this result as follows. The pole of the propagator, defines the physical mass of the neutrino which
is equivalent to the ‘running’ eigenvalue evaluated at R−1. As long as neutrinos are ‘on-shell’,
they carry this mass. The ‘running’ neutrino masses on the other hand varies with the off-shell
momentum. Experimentally, the effect of this ‘running’ could be possibly seen in processes where
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Figure 1: Running of the neutrino squared masses with the energy. We have chosen Λ = 105 GeV, g2 = 1,
and R1 = R2 = 1 eV−1. The running occurs between the cutoff scale and the compactification scale.
Below the compactification scale, there is not running anymore.

neutrinos are off-shell. The best probed process in this regard is neutrinoless double beta decay
which involves lepton number violating neutrino masses. We note only that as long as the lepton
number is violated by Majorana masses and the running of the Dirac masses does occur, this is
enough to have observable effects due to the running between the pole mass and the off-shell
momentum, of the order the nucleon mass, in the neutrinoless double beta decay diagrams.

4. Neutrino oscillations

Lets now consider the interesting phenomena of neutrino oscillations. Generally, the gauge
neutrino eigenstates ν f are related to the set of mass eigenstates ν̃i through a unitary mixing matrix
U as

ν f = ∑
i

U f iν̃i , (4.1)

where the matrix U is extracted from the neutrino mass matrix. The probability of oscillation
between two gauge eigenstates ν f and ν ′

f after a time t is given by

Pf→ f ′(t) = ∑
i

∣

∣U f iU f ′i
∣

∣

2
+2 ∑

i> j
Re
(

U f iU∗
f ′iU∗

f jU f ′ je[i(E j−Ei)t]
)

, (4.2)

where Ei =
√

p2 +m2
i is the energy of the mass eigenstate ν̃i. Of a particular interest for our case

where the active neutrinos oscillates into bulk states is the survival probability after a time t, given
by

Pf→ f (t) =

∣

∣

∣

∣

∣

∑
i
|U f i|2eiEit

∣

∣

∣

∣

∣

2

. (4.3)
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We consider in the following the case of the Dirac neutrinos discussed in the previous section. We
can explicitly derive the neutrino oscillation probability using the eigenvalues and eigenvalues of
the (doubly) infinite neutrino mass matrix in the KK basis. The active neutrino survival probability,
in the non-relativistic approximation, is given by the formula [9, 19]

PνL→νL(t) =

∣

∣

∣

∣

∣

∑
(k1,k2)∈I

2
N(k1,k2)

ei
m2

(k1 ,k2)
t

2p

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∞

∑
k1,k2=−∞

2δk10δk20

N(k1,k2)
ei

m2
(k1 ,k2)

t
2p

∣

∣

∣

∣

∣

2

. (4.4)

The factor 2 in the first sum accounts for the fact that each massive state corresponds to a Dirac
neutrino. An approximate estimation of the normalisation factors N(k1,k2) gives the result

N(k1,k2) ' 2m̄2

m2
(k1,k2)

(4.5)

where m(k1,k2) are the KK masses. We can anticipate from (4.5) some similarities and also some
differences between the 5D and the present 6D case. Like in the 5D case [9], for large KK masses
Ni ∼ m2

i and the active neutrino mostly oscillates into the lowest mass states. In the 6D case, on the
other hand, the ‘degeneracy’ of the massive states is higher than in 5D and the decoupling of the
massive states is slower than in 5D. Numerically too, we find similar behaviour. For a relatively
small number of states, P(t) is always smaller than 1. In fact, even P(0) is smaller than 1, unless
one sums over all the states. P(t) oscillates with t, though it is always remaining smaller than P(0).
The oscillations become more rapid as we sum over more and more states. Finally lets note that the
brane Majorana case can simply be recovered from the previous expressions by the replacement
m̄2 → m̄2 +miM0.

Further, in order to have sizable running the active neutrinos are required not to be much lighter
than the sterile neutrinos, the oscillations into the bulk sterile states are constrained by the existing
experimental data. The two flavour active-sterile oscillations can be suppressed by choosing a
sufficiently small coupling h2. For example, for h2 = 0.05 we find (for Λ = 100 GeV) and
summing up to first 200 states that the survival probability of the active neutrinos can stay around
70%. The survival probability obviously decreases as h2 increases. When other active flavours are
added, since mass differences for active neutrinos ∆m2

νeνµ ,∆m2
νeντ � R−2

c ∼ eV 2, for small values
of the coupling g2 and for all KK states the mass differences m2

νi −m2
KK � ∆m2

νeνµ ,∆m2
νeντ . In

this case, the oscillations into sterile neutrinos are subdominant with respect to active neutrino
oscillations.

5. Discussion

In this talk, we have presented a model for neutrino mass generation where a 6D Weyl neutrino
interacts with the 4D SM neutrinos through a brane localised mass term. We have shown that the
brane localised coupling gets renormalised with energy (in the 4D sense) at the tree level. In our
work[19], we find this result by two different methods. First by diagonalizing the (infinite) mass
matrix in the KK basis, along the lines of [9, 10, 22]. Second by considering the bulk propagation
of the fields with appropriate boundary conditions due to the orbifold projection in presence of
brane-localized operators [23]. While, most of the discussion has been concentrated for the case of
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a single generation, we can easily extend the analysis presented for more than one flavour. In such
a case, we need to introduce three distinct bulk sterile Weyl fermions Ψa and therefore the brane-
bulk mixing mass term becomes a 3× 3 matrix. It can be then shown that the classical running
does not modify the flavour mixing present at the scale Λ by renormalising it in evolving towards
low energy.
Acknowledgements : I am grateful to my collaborators E. Dudas and C. Grojean without whom
this work would not have been done. We are grateful to G. Bhattacharyya, T. Gherghetta, P. Hol-
stein, S. Lavignac, J. Mourad, C. Papineau, M. Peloso, K. Sridhar and especially to V. Rubakov for
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