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Effective Lagrangians Norisuke Sakai

1. Introduction

In the brane-world scenario, our four-dimensional spacetime is realized as a topological defect
in a higher dimensional spactim@]] It is desirable to construct such topological defect as vari-
ous topological solitons. Supersymmetric gauge theories have been extremely useful to construct
realistic models beyond the standard mofBkl YWhen a field configuration preserves a part of su-
persymmetry (SUSY), it satisfies the field equation automatiddjlyJuch a field configuration is
called the Bogomol'nyi-Prasad-Sommerfield (BPS) sfleThe BPS solitons in the Higgs phase
are extensively reviewed recent[§][ Quite often BPS solitons contain a number of parameters
such as positions in the space-time and/or an internal space. These parameters are called moduli.
To understand the dynamics of solitons for the brane-world scenario, it is important to construct
the low-energy effective Lagrangian of the localized modes on such solitons. For that purpose, the
standard method is to promote the moduli parameters of the background soliton into fields on the
world volume of the solitor(q]. The moduli fields provide massless fields on the world volume of
the soliton. This moduli approximation method is based on the assumption of the weak dependence
on the world-volume coordinates, and gives the low-energy effective Lagrangian which contains all
nonlinear terms with two derivatives or less. We have recently worked out a systematic method to
obtain the effective Lagrangian on the BPS background in supersymmetric gauge theories, taking
domain walls and vortices as concrete examjillksWe have introduced a slow-movement param-
eterA, and expanded the Lagrangian in terms of the superfields with four preserved supercharges in
powers of the slow-movement parameter. We have found that maintaining the preserved supersym-
metry manifest facilitates the procedure enormously. In this article, we introduce the systematic
method taking domain walls as an example.

We consider the supersymmetd¢Nc) gauge theories with eight supercharges With> N¢)
hypermultiplets in the fundamental representation as an illustrative example. Although we work
in the space-time dimensions highest allowed by supersymmetry, namely domain walls in five
dimensions, our discussion should be applicable in lower dimensions which can be obtained by
dimensional reductions. We can naturally specify the order of magnitude in powers of the slow-
movement parametarfor various fields. Thus we obtain a systematic expansion of the Lagrangian
in powers ofA. The expansion gives a superfield form of the BPS equations at the zero-th order
in A, and the superfield equation to determine all the fluctuation fields at the next order. We retain
up to the terms of ordek? in the Lagrangian, in order to obtain the effective Lagrangian at the
lowest nontrivial order, namely up to two derivatives. We are now computing the higher powers
of A in our systematic expansion to obtain the effective Lagrangian with higher derivative terms.
We maintain four preserved SUSY manifest throughout our procedure, and obtain a density of the
Kahler potential in four SUSY superspace. By integrating over the extra dimensions, we obtain
the K&hler potential of the effective Lagrangian which was difficult to obtain in general previously.
Our results can be used to study soliton scattering(iNc) gauge theories.

2. Slow-move Approximation in terms of Component Fields

Let us introduce our model and describe briefly the usual component method to solve the BPS
equations. The bosonic parts of the Lagrangian with a common gauge coupling caniiant
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U(Nc) = SU(Nc) x U (1) in five dimensions is given by

1
T2

1 . .
Z|poson=Tr —ngFMN(W)FMN(W) g (PMZ)? — PMH (guH)T| - V. (2.1)

The physical bosonic components in the vector multiplet are gauge ¥Wéldand the real scalar
fields = in the adjoint representation, and those in the hypermultiplet are the doublets of the
complex scalar field$!' i = 1,2 which can be assembled inNr x Ne matrices. The indices
M,N =0,1,---,4 run over five-dimensions, and the mostly plus signature is used for the metric
nun = diag(—1,+1,---,+1). The covariant derivatives are defined@gZ = duZ + i[\Wu, Z],

DwmH' = (9w + Ww)H', and field strength is defined &y = F[Dw,Dn] = duWy — I +
i[Wwm, Wy ]. After eliminating auxiliary fields, the scalar potentiais given by

2 . .
V= %Tr[(HlH”—HZHZT—c1NC)2+4H2H”H1H2T} +Tr[(ZH = HIM)(SH! - HIM)T] (2.2)

with the hypermultiplet mass matrid = diag(my, ---,my.) (ma € R) and the Fayet-lliopoulos
parameter taken along the third directiorSd(2)r asca = (0, O, ¢) with ¢ > 0.

By requiring half of SUSY to be preserved, we obtain i@ BPS equations for domain walls
which depend oy only

PHY = —sHY+HIM,  AHZ =3HZ - H2M, (2.3)
D3 = 922 (clne —HHT+H2H2T),  0=g?HH2T (2.4)
The solution of the BPS equations saturates the BPS bound for the tension of the (multi-)wall
T = 9?& = 9?@ [Tr[e2 — (ZHIHY — HIMHT) + (ZH2H2T - H2MH ") |
= c[Trz] " (2.5)

where the energy density is denotedsas We can solve the hypermultiplet BPS equat@) by
introducing arN¢ x Nr constant matrixg called themoduli matrix[g], [©]

H! = SH(y)Hee"W,  H%=0, (2.7)

where the moduli matri¥ly carries all the parameters of the solution, namely moduli. The moduli
matrices related by the following-equivalence transformations are physically equivalent:

Ho — V Ho, Sly) = VSYy), V € GL(Nc, C). (2.8)

The vector multiplet BPS equatio.@) can be converted to the following “master equation” for a
gauge invariant quantit® = SS [g]

3, (Q710yQ) = ¢?c(In —Q71Q0), Qo= c Hoe™VH{. (2.9)

The matrix functionS can be determined from the solutiéh of this master equation by fixing
a gauge, and all the other fields can be obtained f&aamdHp. Since the BPS soliton has co-
dimension one, the solution represents (multiple parallel) domain walls.
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We can obtain the low-energy effective Lagrangian by promoting the moduli parangéters
in the moduli matrixHy to fields on the soliton world volume dependingxh (1 = 0,1,2,3)

Ho(¢”) — Ho(¢" (x)). (2.10)

To represent the weak dependence on the world-volume coordinates of the &fjJitemihtroduce

“the slow-movement parameted’, which is assumed to be much smaller than the typical mass
scale in the problem, in our case, the hypermultiplet mass differ&ntandg,/c wherec andg

are the Fayet-lliopoulos parameter and the gauge coupling.

A < min(Am,g\/c). (2.11)

The nonvanishing fields of th&/2 BPS background have contributions independend oand
derivatives in terms of the world volume coordinates are assumed to be of\grdepressing the
weak dependence on the world-volume coordinates

Hl~0(1), T~0(1), du~ON). (2.12)

Those fields which vanish in the background solution can now have nonvanishing values, induced
by the fluctuations of the moduli fields of ord&r

Wi~ O(A), HZ~ (),
uHE~ O), DuE~ O(N), FuyW) ~ (M), (2.13)

and other components of the field strength are higher ordefs itf we decompose the field
equations in powers of, we find that orde° equations are automatically satisfied by the BPS
equations[Z.3 and 4. However, it becomes more and more complicated to solve the field
eqguation at higher orders in the expansion in powers,adince various fields that vanish in the
background become nonvanishing, and need to be solved. We shall show in the next section that
maintaining the preserved SUSY manifest greatly helps to determine these newly nonvanishing
fields and to organize the expansion of field equations in powets of

3. Slow-move Approximation in terms of Superfields

Since four supercharges are conserved by the BPS domain walls, an action for fluctuations
around the BPS background can be written in term of the superfield for four supercharges. Let us
define the superfieldsising two component spinor Grassmann coordinéﬂazﬁa. The compo-
nents of superfields are fields in five dimensions. A vector multiplet with eight SUSY consists of a
real vector superfiel (= V') and an adjoint chiral superfietd (ﬁdd) =0) in terms of superfield
with four superchargefH]. The vector superfielf contains a gauge field,, u =0,-- -, 3 for the
four spacetime dimensions, the half of gaugino field and an auxiliary field? 3. If one takes the
Wess-Zumino gauge, it becomes explicitly as

v|,, = 60" OW, +i626A, —i6%6A, + 5929_2@3, 23=Y3_ 93, (3.1)

IWe use the convention of Wess and Bag@&] for Grassmann coordinates and superfields in this paper, except
that four-dimensional spacetime indices are denoted by Greek alphabetsO,-- -, 3. For conventions of superfields
in terms of component fields, we mostly follow those in REfd.,[and [1J.
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where the auxiliary field? 2 of the superfield for four SUSY is shifted from the auxiliary i@l

for eight SUSY by the covariant derivative of adjoint scaalong the fifth coordinate (the extra
dimensionsy [[]], [IJ. This difference becomes important in identifying the topological charge
later. The chiral scalar superfietdl contains a complex scalar field made of the adjoint scalar
and the fifth component of the gauge fi#l] as the real and imaginary parts respectively, and the
other half of gaugind _ and a complex auxiliary field* +iy?2

D =3 4+iW,+v20(—iv2A_) +8%(YL +iY?). (3.2)

The hypermultiplet are represented by a chiral superfidiéind an anti-chiral superfield?. The
(anti-) chiral superfieldH! (H?) consists of the physical complex scalar figld (H?), hyperino
Y, (@), and a complex auxiliary field* (#?)

H=H'+v20y. + 027,  Fl=F'4 (2 - )H?+H2M, (3.3)
H2=H24+V200 + 6272,  F2=-F?>—(Zy+3)H +HM, (3.4)

where the auxiliary fieldZ?! (#?) of the superfield for four SUSY is shifted from the auxiliary
field F1 (F2) for eight SUSY by the covariant derivative of the other hypermultiplet s¢dfaiH 1)
and othet terms [[7], [IJ. Please note that we have chosen to denote the anti-chiral superfield as
H2, as shown in thé dependence in EG).

The derivativel5y which is covariant under the complexified gauge transformations for the
hypermultipletH and the adjoint chiral scalar multiplét are given by

DyH! = (8, +P)HY,  Dye? =g? —o'e?’ — V0. (3.5)

If supplemented by fermionic terms, the bosonic Lagrandiafl) becomes invariant under the
supersymmetric transformations with eight (real) Grassmann parameters. We can now rewrite this
fundamental Lagrangia®’ in terms of the superfields for four supercharges as

L = —but / d*eTr [—2cv - 2;2 (e 2VDye?)* + & HIH + e2VH2H2T]
+ (/dZBTr [IﬁyHlHZT—HlMHZT—F 4;zw"vva} +h.c.>, (3.6)
where field strength superfieW is given by
Wy = —%55e‘2VDae2V. (3.7)

In transforming the fundamental Lagrangi@g) in terms of the superfield for four SUSY into the
manifestly supersymmetric form for eight SUSXJ), we need to make several partial integrations
with respect to the fifth coordinate and have to retain the surface terms carefully in the procedure.
We also note that the auxiliary fields for four SUR¥2, and.Z' are different from those for eight
SUSY Y3, F! by total derivative terms as in EQZ]), (3, and B3. In this way we find a

2The other terms involving the adjoint scaland the hypermultiplet mass matiik can be understood as a result
of the Scherk-Schwarz dimensional reduction from six dimensions.
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total divergences;,, representing the topological charge contributing to the energy density of the
background which maintains four SUSY. Since we are interested in bosonic components of the
topological term#’, we exhibit only the bosonic terms explicitly

En = 0y[Tr[CZ— (SHMH - HIMHY) + (ZH2H2T - H2MH?T)
2 -
- @@3Z+91H2T+H2ﬁ”+ (fermionic terms]] (3.8)

Let us emphasize again that the topological term is precisely the difference between the fundamen-
tal Lagrangian which is manifestly supersymmetric under the eight SUSY and another fundamental
Lagrangian in terms of superfields for four manifest SUSY.
Following the usual procedufd] we promote the modulp' to fields¢'(x) on the world vol-
ume of the background soliton, and assume that the moduli f&{elsaround the wall background
to fluctuate only very slowly. Namely, we introduce a paramatésr the slow movement and ne-
glect high energy fluctuations as explained in &y explicitly writing the derivatives of moduli
fields we obtain

o =0)¢, ¢ =0N)¢, A< min(m,gy/c). (3.9)

Here and in the following/’(1) means that it is of the order of the characteristic mass scale
min(Am,gy/c). The slow-movement parametarin Eq.[3.9 is defined to be of the order of
the world-volume-coordinate derivativ®,. The supertransformation implies that the square of
the derivative in terms of the Grassmann coordin&agives translation in the world-volume :
(0/36)? ~ . Therefore we obtaidd ~ 3/d6 ~ (A %). To assign the order of for hyper-
multiplets, we observe that the first hypermultight has nonvanishing values whereas the second
hypermultipletH? vanishes in thd /2 BPS background solutio(. If we let the moduli param-
eters to fluctuate over the world-volume coordinates with the ordar, dfie fluctuation induces
terms of order\ in both hypermultiplets. Therefore the second hypermultipléiaturally be-
comes nonvanishing values and is of ordeiCombining the above order estimates of component
fields, we assume the order of the hypermultiplet superfields and the adjoint chiral scalar superfield

Hi~0(1), H>~00)), &~0(). (3.10)

Note that this assignment breaks half of supersymmetry, and surviving supersymmetry is manifest
in this superfield formalism. BPS equations for walls also respect this supersymmetry automati-
cally, as we will explain later. On the other hand, the gauge Wé|dvanishes in the BPS back-
ground, and is only induced by the orderfluctuations of moduli fields. Since the gauge field
appears as the coefficient 6?“6 ~ 0(A71), we find the vector multiplet to be of the order of

V~ol), (W~ O(A)). (3.11)
Neglecting’(A%4) we obtain
1 A
L= —En+ / d*eTr {_2cv +eVHIH + 22 (eZVDyeZV)Z]
+ </d26Tr [ByHH?T — HIMH?T] + h.c.) : (3.12)
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Up to this order, we can see thaf, V serve as Lagrange multiplier fields. Namely the field
equations foH? andV give constraints

DyH! = HM, (3.13)
g’ (c—HHYe?) = —Dy (e Dye?), (3.14)

respectively. By expanding the superfield constraints in powers of the Grassmann coomiéates
we find, at the leading order, the BPS equatiddd)( and 2.9 for the hypermultipleH?, and
vector multiplet scalak with H2 = 0.

We can now choose a convenient gauge of the complexifigdt) local gauge invariance.
Let us define an element of the complexified gauge transform&tionexpress the chiral scalar
superfieldd for the adjoint scalar of the vector multiplet as a pure gauge

»=514s. (3.15)
Then the constraint equatidB.[3 for the hypermultiplet chiral superfield becomes simpler
dy(SH') = SH'M, (3.16)
which is easily solved in terms of the moduli matrix chiral superfiéldsas
H(x,8,6,y) =S 1(x,6,0,y)Ho(x, 6,0)eW. (3.17)

After solving the hypermultiplet constraint equati@I3, we can now define a vector super-
field Q which is invariant under the complexifiét Nc) gauge transformations

Q=Se2Vs', (3.18)
The remaining constrainB(I4) can be rewritten in terms of the gauge invariant superfieés
4, (Q719,0Q) =g’c(1-07'Qy), Qp=ctHeeWH], (3.19)

which gives the master equatidB.9) as the lowest component. Therefore this is the superfield
extension of the master equation.

By using the solution of the constraint equati@lf for the hypermultiplet superfield?,
we can rewrite the fundamental Lagrangian in (up to order&(A?)) in terms of the gauge
invariant superfiel@ as

_ 1 _ 2
L= —Eut / d*6 [clogdeQ+cTr (QQ 1)+2—92Tr Q@ 199)°| +0(1%. (3.20)

The first, second, and third terms in &0 integrand come from the corresponding terms in the
d*@ integrand of the fundamental LagrangiBl@ (up to orderd(A?)).

The superspace extensi@I9 of the master equation provides a method to determine all the
guantities of interest as a systematic expansion in powers of Grassmann coor@jﬂ_aieéollows.
Suppose we have an exact squtgu(Ho,Hg,y) for the master equatiof2{9 as a function of
moduli matrixHo, HJ

Q=0 =Qs(Ho(X),Hd(x),y). (3.21)
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By promoting the moduli matrix to a superfidtth, Hg defined in EqB.13), we obtain the solution
for the vector superfiel@ of the superfield master equati@I9 as a composite of the chiral and
the anti-chiral superfields,

Qsol(Ho(X, 8),HJ(x,8),y) = Qsol. (3.22)

As we noted in EqZ.I9, the superfieldd = Se=?/S' is U(Nc) supergauge invariant, but the
division betweers, (S") ande 2" depends on the gauge choice. In obtaining the solution for
the fluctuation fields such a%,, we need to choose the Wess-Zumino gauge for the real general
(vector) superfield/sq. This gauge transformation to the Wess-Zumino gauge is expressed as a
multiplication of the chiralSs and anti-chiraBZ0| superfields from left and right respectively as

Ssole_zvsmslm = Qg (3.23)
Then expansion of the left-hand side BFZ3 in powers of the Grassmann coordinage$ gives
Ssole 28] = SsoSly + 00+ 9_(i (Ou'Ssol) Slo — Ssol(Iu S + ZSsO'W;fOlSlol) +---, (3.24)

where we have not displayed the bilinear terms of fermions, and dots denote other powers of Grass-
mann coordinates. Expanding the right-hand side ofE2g( we obtain

Qsol(Ho,H,Y) = Qsoi+ 0048 (i(8y — 8 Qsol) + -+, (3.25)

where we have defined the variatidp and its conjugate‘iﬁ with respect to the scalar fields of
chiral superfields and anti-chiral superfields

0

: 5
5“zzaucp'5—d, 5
|

Zd“(p'*&pw (3.26)

respectively. If the variatiod, andd;; act on those functions which depend on the world-volume
coordinates only through moduli fields, they satisfy, = &, + &,
Comparing the lowest components BfZ4) and B.29), we obtain

Ssolslm = Qsol. (3.27)

This shows that we cannot ava, to depend on botlp' and¢'*, since we cannot factorize these
dependences if2gq. One should note theg, (S;rol) is still chiral (anti-chiral) scalar superfield,
taking bothg' and¢'* as lowest components of chiral scalar superfields. Comparison of the vector
components of3.24 and B.29), we obtain a solution of the gauge fields as

—IWS® = § 18]S+ S 0u Syt + (bi-linear terms of fermions (3.28)

It is interesting to observe that this solution of gauge field fluctuati/gﬁ receives contributions

only from the ¢'* (¢') dependence o8 (S;ro,), in spite of theSgo being the chiral superfield.

Similarly the adjoint scalaX and the gauge field, in the extra fifth direction is obtained from the
lowest component of EIH

Pso = Sqq Sl — T+ WS = S J0y S (3.29)
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The other components of the superfiefdsV, and® are similarly determined by the superfield
equations.

In order to obtain the low-energy effective Lagrangi#ly, we just need to substitute the solu-
tions Qg into the fundamental Lagrangia#’ and integrate over the extra dimensional coordinate
y. The resulting four-dimensional effective Lagrangianttyis given by

Lt = /dy.,zﬂ _ —TW+/d46K(<p, o)+ (A%, (3.30)

where the Kahler potential is expressed by an integral form as

K(p,¢") = /dy%(qx qo*,Q,y)\ (3.31)

)
Q=Qxs

with a density
+ - 1 . 2
H(9,¢",Q,y) = clogdeQ-+cTr (QuQ 1)+2—92Tr (@ 1a0)". (3.32)

Since we are considering the massless fields corresponding to the moduli, we naturally obtain a
nonlinear sigma model whose kinetic terms are specified by the Kahler potegiap*), without
any potential terms. Let us note that our method gives the density of the Kéhler potential directly
without going through the K&hler metric. This is in contrast to the component approach where
one usually obtains the Kahler metric of the nonlinear sigma model with component scalar fields,
and then integrate it to obtain the Kahler potential with a lot of labor. It is interesting to note
that our effective Lagrangian is not just an effective Lagrangian on a single wall, but an effective
Lagrangian on the multiple wall system with various moduli such as relative distance moduli as the
effective fields. Therefore we can discuss strings stretched between multiple walls (branes), which
was difficult previously as a Bloff{].3

By using the superfield master equati@nl@, we can show that the second term in BBE@
becomes a total derivative term. Therefore it can be omitted from the effective Lagrangian. The
wall tensionT,, is given by the topological charge in HB.B) as an integral over the total derivative
term&,, in Eq.(3.9 by using the boundary condition which requires that vacua are reached at both
infinitiesy = oo,

In the strong coupling limi? — o, the superfield master equatid®I9 becomes just an
algebraic equatiof2 = Qp, and exact solutions faR can be obtained and the Kahler potential
assumes a simple form in this cag [

Ko(,¢") = c/dylog deQo. (3.33)

In [ we also worked out the integrand of the effective Kahler potential for non-Abelian
vortices, whose moduli matrix was establishedlf|] It turned out to contain the Wess-Zumino-
Witten-like term. On the other hand it has been recently shown that the one for domain wall
networks (loops)1g] takes the similar form witH3.32 [[I7. Our method should be applicable to
monopoles (instantons).

3We can construct the full solutions of this composite soliton as a 1/4 BPSB}ate [
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