
P
o
S
(
E
S
L
E
A
)
0
0
5

Testing of DCCP at the Application Level

Richard Hughes-Jones∗

The University of Manchester
E-mail: R.Hughes-Jones@manchester.ac.uk

Stephen Kershaw
The University of Manchester
E-mail: Stephen.Kershaw@manchester.ac.uk

Datagram Congestion Control Protocol (DCCP) is a recently developed transport protocol whose
development and implementation in Linux is being aided by the work of Mark Handley and
Andrea Bittau in the ESLEA project. The protocol is attractive to many applications where data
is transferred with tight constraints on the timing of data delivery, such as internet telephony and
e-Science applications such as e-VLBI.
Porting test programs to DCCP has allowed the investigationof the DCCP implementation in re-
cent releases of the Linux kernel and reportingof performance test results. A suggested approach
for the use of DCCP for e-VLBI is discussed, with a proposal for a new CCID.

Lighting the Blue Touchpaper for UK e-Science - Closing Conference of ESLEA Project
March 26-28, 2007
Edinburgh

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
E
S
L
E
A
)
0
0
5

Testing of DCCP at the Application Level Richard Hughes-Jones

1. Introduction

Datagram Congestion Control Protocol (DCCP) is a recently developed transport protocol,
similar in parts to both TCP and UDP with the intention that certain applications and the trans-
port of certain types of data may benefit. Where congestion control is required but reliability is
not, DCCP provides a transport level option attractive to many applications such as VoIP and e-
VLBI. The congestion control algorithm, CCID, used by DCCP is selectable, allowing DCCP to be
tuned more closely to the requirements of a particular application. CCID2 isTCP-like Congestion
Control, closely emulating Reno TCP while CCID3 isTCP-friendly rate control, minimising rate
fluctuations whilst maintaining long-term TCP friendly behaviour.

DCCP has been in the Linux kernel since 2.6.14, with recent kernel releases such as 2.6.19
and 2.6.20 having an implementation, incorporating the code developed by ESLEA, that is often
considered as fairly stable and high-performance. We report on the porting of a network testing
application to DCCP, experiences with creating a stable DCCP testbed and results from initial
performance tests.

2. Porting of test software

In order to test the performance of DCCP, software tools wererequired henceDCCPmon is a
port ofUDPmon by the original author, Richard Hughes-Jones [1]. Guidancewas given by Andrea
Bittau to help with the port to DCCP and the resulting application is being used and proving to
work well. However, the process was not entirely trouble-free - some problems were encountered
that were perhaps indicative of an implementation that is indevelopment, rather than complete
and polished. DCCP related #defines were not to be found in theuserland include files, an issue
mitigated by creating specific include files. Some system calls were noted to be missing and the
API was in a state of flux with functions changing between kernel releases 2.6.19 and 2.6.20. For
this reason, and due to limited testing,DCCPmon is currently still considered by the author as
experimental.

During the development ofDCCPmon and for corroboration of results, a patched version of
iperf [2] was used. In addition to the information from the main test application it is desirable to
gather data from as many other sources as possible. One useful window into the kernel networking
stack is though the kernel SNMP statistics, however there are currently (as of kernel 2.6.21) no
SNMP counters for DCCP variables. These statistics would also have been invaluable when prob-
lems became apparent with certain kernel versions and it would certainly be a worthy addition to
the implementation at the earliest opportunity.

3. End-host setup

The computers used as end-hosts were server-quality SuperMicro machines, with all configu-
rations tested to give 1 Gbit/s throughput using UDP/IP or TCP/IP over Gigabit Ethernet interfaces.
The systems used Intel Xeon CPUs and were running Scientific Linux or Fedora distributions of
Linux. We had systems using two Dual Core Intel Xeon Woodcrest 5130 CPUs clocked at 2 GHz,
dual-booting 32-bit and 64-bit distributions of Fedora Core 5. We also had systems with two Intel

2



P
o
S
(
E
S
L
E
A
)
0
0
5

Testing of DCCP at the Application Level Richard Hughes-Jones

Xeon 2.4 GHz Hyper-Threaded CPUs using a 32-bit distribution of Scientific Linux 4.1. All sys-
tems were equipped with and DCCP tested with on-board Intel e1000 Gigabit Ethernet ports. Tests
with UDP and TCP gave stable line-rate performance over all tested networks, including 1 Gbit/s
over a transatlantic lightpath.

4. Experiences with the Linux DCCP implementations

While developing theDCCPmon program and preparing for performance tests, several differ-
ent Linux kernels have been used, often displaying undesirable effects. With such a new implemen-
tation of a new protocol it has often been unclear whether we are seeing problems with the DCCP
implementation or something specific to our systems, however we report on our findings and some
of the steps taken to achieve a stable DCCP test bed.

4.1 Kernel version 2.6.19-rc1

This kernel version is a release candidate for stable kernelversion 2.6.19, which was tested
before the stable kernel version was released. Using bothDCCPmon andiperf it was found that we
were not getting a working DCCP connection -tcpdump showed that the connection was success-
fully made, with packets exchanged both ways but no ACKs weresent in response to data packets
received. In the absence of feedback the sender-side DCCP transmit timer progressively fell back
until a threshold upon which DCCP terminated the connection.

We conducted many diagnostic tests to establish the cause ofthe problem. Advanced features
of the network interface card were disabled and DCCP data wassent though a tunneled connection
to prevent possible discrimination of the new protocol. Eventually, inserting debugging code into
the kernel showed that data were incorrectly being discarded due to header checksum errors, a
problem that was later fixed in the network development tree and merged into the stable 2.6.19
kernel release.

4.2 Kernel versions 2.6.19 and 2.6.20

As previously noted, the API calls changed slightly, necessitating further development of the
test software code, after which, with the checksum problemsresolved it was hoped that interesting
tests could be run.

The initial results were promising, with CCID2 showing short-term line-rate throughput - a
useful data rate of around 940 Mbit/s after header overheads. CCID3 had an average rate of around
300 Kbit/s but unfortunately DCCP proved to be unstable using either CCID on our 64-bit systems.
Transfers would often only last for a few seconds before the receiving system hung with a kernel
panic. Some tests would continue for longer, a few minutes with the same throughput performance,
but all would trigger a kernel panic within four minutes and repeating tests with larger packet sizes
would lead to a quicker crash. The crash dumps associated with the panic generally indicated that
the crashes were occurring most regularly in the region of the packet reception code of the network
interface card (NIC), where memory is allocated to store incoming packets.

Repeating the tests using a 32-bit distribution and kernel on the same computers yielded the
same behaviour, however the older systems running Scientific Linux on Hyper-Threaded Xeon
processors proved to be more stable, with extended runs possible, with the majority of transfers

3



P
o
S
(
E
S
L
E
A
)
0
0
5

Testing of DCCP at the Application Level Richard Hughes-Jones

persisting until deliberately terminated after many tens of minutes. The system logs, however,
showed that everything was not perfect, with many zero orderpage allocation failures logged, in a
similar context to the panics - close to the receive interrupt of the NIC.

5. Towards a stable test bed

Analysis of crash dumps and kernel messages, showed that most error messages were gener-
ated when memory was being allocated in NIC RX IRQ handler. Toattempt to fix the problem the
operation of the NIC driver was analysed together with aspects of the kernel memory management
code.

In general, when a request is made for memory allocation, therequest will either be serviced
immediately (if memory is available) or it will be blocked while sufficient memory is reclaimed.
However, when memory allocation is requested in an interrupt context, for example memory al-
location to store received packets, blocking is forbidden.In order that the memory allocation has
a higher chance of succeeding, the kernel reserves some memory specifically for this situation
where the allocation is classed asatomic. The amount of memory reserved for atomic allocations
is determined by the value of themin_free_kbytes sysctl variable.

Increasing themin_free_kbytes parameter in the receiving host from the default value of 5741
to 65535 proved to prevent all the previously seen error messages, though it is not entirely clear
to us why the memory allocation problems originally occur. It is possible that the default value
of min_free_kbytes is not sufficient relative to the time between scheduled runsof the memory
management daemon (e.g. kswapd), which are scheduled to keep that minimum amount of memory
free. A larger value ofmin_free_kbytes may mean that the reserved memory is never filled before
the memory management routines can be run. As we do not encounter similar problems with UDP
and TCP, it is possible that the higher CPU utilisation of DCCP could cause such a situation by
using more CPU time. It is strange that on one system the allocation failures prompted errors
messages while on another the result was a fatal system crash.

The problem is not entirely mitigated though as even with theincreased value ofmin_free_kbytes
crashes persist if the packet size is increased sufficiently. More investigation is needed to gain a
full understanding of this unwanted feature of our DCCP test.

6. Results of recent tests

With an increased value ofmin_free_kbytes on the receiving hosts, the systems proved to be
stable with 1500 Byte packets, with no tests generating error messages of any kind. Every test, with
flow durations of up to 2 hours, remained stable and was terminated gracefully at the predetermined
time, using all kernel versions of 2.6.19 or later. Having a stable test bed has allowed preliminary
tests of DCCP throughput performance, as outlined below.

6.1 Back-to-back tests

With any two systems CCID2 can attain the maximum possible data rate of 940 Mbit/s, which
is line-rate over Gigabit Ethernet and stable for the duration of the test. This result is illustrated in
Figure 1(a), with Figure 1(b) showing the different behaviour of CCID3. With CCID3 there is an

4



P
o
S
(
E
S
L
E
A
)
0
0
5

Testing of DCCP at the Application Level Richard Hughes-Jones

(a) CCID2

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

800

900

1000

Sampling time /s

S
am

pl
ed

 th
ro

ug
hp

ut
 / 

M
bp

s

Throughput for 2 hour DCCP CCID3 iperf run, 5s sampling

(b) CCID3

Figure 1: CCID comparison

0 500 1000 1500 2000 2500
240

260

280

300

320

340

360

380

Sample time / s

S
am

pl
ed

 th
ro

ug
hp

ut
 / 

kb
ps

CCID3 throughput, iperf sampled every 5s

800 850 900 950 1000 1050 1100 1150 1200
240

260

280

300

320

340

360

Sample time / s

S
am

pl
ed

 th
ro

ug
hp

ut
 / 

kb
ps

CCID3 throughput, iperf sampled every 5s

Figure 2: Expanded view of initial CCID3 throughput variation

initial period with an average rate of 300 Kbit/s, with the regular rate variation detailed in Figure 2.
After a number of packets (around 65,500) the rate jumped to line-rate and remained steady, as seen
in Figure 1(b). This is strange behaviour, with the number ofpackets being indicative with a 16-bit
overflow perhaps, but there has been a lot of patches producedfor CCID3 recently which have not
yet made it into the stable Linux tree. Using a development tree and patches from numerous authors
changes the CCID3 behaviour completely. The most appropriate comment to make is that CCID3 is
developing and the performace of current stable kernels is not indicative of what is beiachievedved
by developers.

6.2 Tests over extended networks

Over a transatlantic connection, with end-hosts in Manchester and Chicago, using UDP and
TCP we can achieve line-rate throughput. Although the back-to-back performance of DCCP be-

5



P
o
S
(
E
S
L
E
A
)
0
0
5

Testing of DCCP at the Application Level Richard Hughes-Jones

tween identical systems gave line-rate, over the 94 ms transatlantic lightpath only a steady 130
Mbit/s was attained.

The performance of DCCP seemed to be CPU limited at the sender, with one CPU showing
an average of 98% load, compared to the load at line-rate back-to-back of 82%. Increased CPU
load with increasing round-trip time can sometimes be observed with TCP flows but it is not im-
mediately obvious that this should be the case with DCCP and it is curious that the effect seems so
dramatic. The performance of DCCP needs to be investigated further over different distances and
with different systems. CPU load profiles can hopefully yield further useful information about the
performance of DCCP.

7. Developing a new CCID

VLBI has a clear requirement to move constant bit-rate data and can tolerate high-levels of
packet loss, making UDP seem like the ideal transport protocol. Other applications have similar re-
quirements, with streaming media and VoIP being examples ofapplications where constant bit-rate
can be advantageous and packet loss is often tolerable. However, there is concern from network
providers that UDP traffic could overwhelm other traffic and overload the network. Concerns and
opinions have been voiced and mitigating options have been discussed at recent meetings such as
the EXPReS & EVN-NREN meeting in Zaandan, NL and PFLDnet 2007/ IRTF workshop in Ma-
rina Del Rey, US, with input from Kees Neggers, SURFnet; GlenTurner, AARNET; Aaron Falk,
IRTF Chair. One option that the authors support is to use DCCPin combination with a new CCID,
initially given the nameSafeUDP. The proposed CCID aims to address the concerns expresses
about using plain UDP by implementing something “UDP like” but with network protection.

SafeUDP would use the DCCP ACK mechanism to detect congestion, following which the
congestion would be evaluated: to ensure that congestion isnot in the end-host and to determine
whether the congestion is transient. This evaluation step is useful to remove the assumption that
all losses are congestion events, which is a conservative assumption but in some circumstances of-
ten unnecessarily detrimental to performance. The application would be notified of the congestion
through modified API calls, withsendto andrecv_from, etc. having new return codes. The appli-
cation can then take action, with the CCID dropping input from the application and informing the
application that it has done so if no action is taken. This idea is being worked on with the long-term
aim of a draft RFC.

8. Conclusions

The Linux implementation of DCCP is almost certainly the most mature implementation avail-
able. Once we had established a stable test bed we investigated the performance of DCCP using
CCID2 and CCID3 with tests conducted primarily using the test programDCCPmon, a port of
existing applicationUDPmon. Apart from minor troubles due to omissions or changes to theAPI,
the port was relatively straight-forward.

We have seen that the back-to-back performance of DCCP usingCCID2 is good, achieving
line-rate for extended (multiple hour) back-to-back, memory-to-memory transfers. The throughput

6



P
o
S
(
E
S
L
E
A
)
0
0
5

Testing of DCCP at the Application Level Richard Hughes-Jones

of CCID3 was generally lower though there is much current development with performance chang-
ing with every patch. Given the amount of patches being created by developers it is uncertain at
what speed the CCID3 implementation in the stable kernel will develop.

Tests of CCID2 over extended networks have been quite limited to date, with early results
showing that DCCP uses much more CPU time and achieves a lowerrate over a transatlantic
lightpath. A rate of 130 Mbit/s to compare with 940 Mbit/s back-to-back has been seen, with
further work needed to fully assess DCCP performance over long-distances.

achieveive a stable test setup has not been trivial and thereare some issues still to be resolved.
We hope that our investigations of the issues with DCCP on oursystems can help improve the
implementation and make DCCP work “out-of-the” box on more systems. Working round the
issues we encountered revealed a protocol implementation that we look forward to investigating
more fully in the near future. Many applications can benefit from DCCP and we hope to extend the
utility by considering the concerns of and working with network managers to build a new CCID.

References

[1] R. Hughes-Jones,DCCPmon Home Page. Available at :
http://www.hep.man.ac.uk/u/rich/Tools_Software/dccpmon.html

[2] National Laboratory for Applied Network Research,NLANR/DAST : Iperf. Available at :
http://dast.nlanr.net/Projects/Iperf/

7


