PROCEEDINGS

OF SCIENCE

Testing of DCCP at the Application Level

Richard Hughes-Jones*
The University of Manchester
E-mail: R. Hughes- Jones@ranchest er. ac. uk

Stephen Kershaw
The University of Manchester
E-mail: St ephen. Ker shaw@ranchest er. ac. uk

Datagram Congestion Control Protocol (DCCP) is a recergletbped transport protocol whose
development and implementation in Linux is being aided by work of Mark Handley and
Andrea Bittau in the ESLEA project. The protocol is attraetio many applications where data
is transferred with tight constraints on the timing of dagdiveery, such as internet telephony and
e-Science applications such as e-VLBI.

Porting test programs to DCCP has allowed the investigaticghe DCCP implementation in re-
centreleases of the Linux kernel and reporfgerformance test residt A suggested approach
for the use of DCCP for e-VLBI is discussed, with a proposatfmew CCID.

Lighting the Blue Touchpaper for UK e-Science - Closing Conference of ESLEA Project
March 26-28, 2007
Edinburgh

*Speaker.

(© Copyright owned by the author(s) under the terms of the Gre&@ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/

Testing of DCCP at the Application Level Richard Hughes-Jones

1. Introduction

Datagram Congestion Control Protocol (DCCP) is a recentlyetbped transport protocol,
similar in parts to both TCP and UDP with the intention thati@ie applications and the trans-
port of certain types of data may benefit. Where congestignrabis required but reliability is
not, DCCP provides a transport level option attractive toynapplications such as VoIP and e-
VLBI. The congestion control algorithm, CCID, used by DCGRelectable, allowing DCCP to be
tuned more closely to the requirements of a particular appitn. CCID2 isTCP-like Congestion
Control, closely emulating Reno TCP while CCID3TEP-friendly rate control, minimising rate
fluctuations whilst maintaining long-term TCP friendly laefour.

DCCP has been in the Linux kernel since 2.6.14, with recemtétaeleases such as 2.6.19
and 2.6.20 having an implementation, incorporating the code developed by ESLEA, that is often
considered as fairly stable and high-performance. We teamothe porting of a network testing
application to DCCP, experiences with creating a stable P@&tbed and results from initial
performance tests.

2. Porting of test software

In order to test the performance of DCCP, software tools wegeired henc®CCPmon is a
port of UDPmon by the original author, Richard Hughes-Jones [1]. Guidamas given by Andrea
Bittau to help with the port to DCCP and the resulting appitais being used and proving to
work well. However, the process was not entirely troubksefr some problems were encountered
that were perhaps indicative of an implementation that idemelopment, rather than complete
and polished. DCCP related #defines were not to be found ingbdand include files, an issue
mitigated by creating specific include files. Some systerts ee¢re noted to be missing and the
APl was in a state of flux with functions changing between &kraleases 2.6.19 and 2.6.20. For
this reason, and due to limited testingCCPmon is currently still considered by the author as
experimental.

During the development ddCCPmon and for corroboration of results, a patched version of
iperf [2] was used. In addition to the information from the mairt tgplication it is desirable to
gather data from as many other sources as possible. Ond waadiow into the kernel networking
stack is though the kernel SNMP statistics, however thegecarrently (as of kernel 2.6.21) no
SNMP counters for DCCP variables. These statistics wod béve been invaluable when prob-
lems became apparent with certain kernel versions and itdaertainly be a worthy addition to
the implementation at the earliest opportunity.

3. End-host setup

The computers used as end-hosts were server-quality SuperMachines, with all configu-
rations tested to give 1 Gbit/s throughput using UDP/IP oPTI2 over Gigabit Ethernet interfaces.
The systems used Intel Xeon CPUs and were running ScientifiexLor Fedora distributions of
Linux. We had systems using two Dual Core Intel Xeon Woodd&&80 CPUs clocked at 2 GHz,
dual-booting 32-bit and 64-bit distributions of Fedora €6t We also had systems with two Intel

Testing of DCCP at the Application Level Richard Hughes-Jones

Xeon 2.4 GHz Hyper-Threaded CPUs using a 32-bit distrilbugbScientific Linux 4.1. All sys-
tems were equipped with and DCCP tested with on-board 4@ Gigabit Ethernet ports. Tests
with UDP and TCP gave stable line-rate performance oveeatetl networks, including 1 Gbit/s
over a transatlantic lightpath.

4. Experiences with the Linux DCCP implementations

While developing thé&CCPmon program and preparing for performance tests, severalrdiffe
ent Linux kernels have been used, often displaying undasieffects. With such a new implemen-
tation of a new protocol it has often been unclear whetherweaeing problems with the DCCP
implementation or something specific to our systems, howeeaeport on our findings and some
of the steps taken to achieve a stable DCCP test bed.

4.1 Kernd version 2.6.19-rcl

This kernel version is a release candidate for stable kemalion 2.6.19, which was tested
before the stable kernel version was released. Using@GtbPmon andiperf it was found that we
were not getting a working DCCP connectiotcpdump showed that the connection was success-
fully made, with packets exchanged both ways but no ACKs werg in response to data packets
received. In the absence of feedback the sender-side D@@ghtit timer progressively fell back
until a threshold upon which DCCP terminated the connection

We conducted many diagnostic tests to establish the cauke pfoblem. Advanced features
of the network interface card were disabled and DCCP datasesatsthough a tunneled connection
to prevent possible discrimination of the new protocol. fuelly, inserting debugging code into
the kernel showed that data were incorrectly being dischitlee to header checksum errors, a
problem that was later fixed in the network development tree rmerged into the stable 2.6.19
kernel release.

4.2 Kernd versions 2.6.19 and 2.6.20

As previously noted, the API calls changed slightly, neitasg further development of the
test software code, after which, with the checksum problessslved it was hoped that interesting
tests could be run.

The initial results were promising, with CCID2 showing shi@mrm line-rate throughput - a
useful data rate of around 940 Mbit/s after header overhg2@$D3 had an average rate of around
300 Kbit/s but unfortunately DCCP proved to be unstablegisither CCID on our 64-bit systems.
Transfers would often only last for a few seconds before gweiving system hung with a kernel
panic. Some tests would continue for longer, a few minutel thie same throughput performance,
but all would trigger a kernel panic within four minutes amgbeating tests with larger packet sizes
would lead to a quicker crash. The crash dumps associatédivatpanic generally indicated that
the crashes were occurring most regularly in the region @ptcket reception code of the network
interface card (NIC), where memory is allocated to stor@mimg packets.

Repeating the tests using a 32-bit distribution and kerneghe same computers yielded the
same behaviour, however the older systems running Scehiifiux on Hyper-Threaded Xeon
processors proved to be more stable, with extended runsbpmswith the majority of transfers

Testing of DCCP at the Application Level Richard Hughes-Jones

persisting until deliberately terminated after many tefsninutes. The system logs, however,
showed that everything was not perfect, with many zero gpdgle allocation failures logged, in a
similar context to the panics - close to the receive interofghe NIC.

5. Towardsa stabletest bed

Analysis of crash dumps and kernel messages, showed thaemosmessages were gener-
ated when memory was being allocated in NIC RX IRQ handleatifempt to fix the problem the
operation of the NIC driver was analysed together with atspefcthe kernel memory management
code.

In general, when a request is made for memory allocationraeest will either be serviced
immediately (if memory is available) or it will be blocked Wédnsufficient memory is reclaimed.
However, when memory allocation is requested in an intérogmtext, for example memory al-
location to store received packets, blocking is forbiddenorder that the memory allocation has
a higher chance of succeeding, the kernel reserves some mempecifically for this situation
where the allocation is classed asmic. The amount of memory reserved for atomic allocations
is determined by the value of tmain_free kbytes sysctl variable.

Increasing thenin_free kbytes parameter in the receiving host from the default value ofl574
to 65535 proved to prevent all the previously seen error aggEss though it is not entirely clear
to us why the memory allocation problems originally occurislpossible that the default value
of min_free kbytes is not sufficient relative to the time between scheduled minthe memory
management daemon (e.g. kswapd), which are scheduledpgdhaeninimum amount of memory
free. A larger value omin_free kbytes may mean that the reserved memory is never filled before
the memory management routines can be run. As we do not etecaimilar problems with UDP
and TCP, it is possible that the higher CPU utilisation of C¢buld cause such a situation by
using more CPU time. It is strange that on one system theaditot failures prompted errors
messages while on another the result was a fatal system crash

The problem is not entirely mitigated though as even withinkeeased value ahin_free kbytes
crashes persist if the packet size is increased sufficieMlyre investigation is needed to gain a
full understanding of this unwanted feature of our DCCP. test

6. Resultsof recent tests

With an increased value afin_free kbytes on the receiving hosts, the systems proved to be
stable with 1500 Byte packets, with no tests generating emessages of any kind. Every test, with
flow durations of up to 2 hours, remained stable and was tertihgracefully at the predetermined
time, using all kernel versions of 2.6.19 or later. Havingabke test bed has allowed preliminary
tests of DCCP throughput performance, as outlined below.

6.1 Back-to-back tests

With any two systems CCID2 can attain the maximum possihiie idde of 940 Mbit/s, which
is line-rate over Gigabit Ethernet and stable for the darabf the test. This result is illustrated in
Figure 1(a), with Figure 1(b) showing the different behaviof CCID3. With CCID3 there is an

Testing of DCCP at the Application Level Richard Hughes-Jones

Throughput for 2 hour DOGP CCID2 iperf run, 5 sampling Throughput for 2 hour DCCP CCID3 iperf run, 5s sampling
T T T T T T T T T T T T T T

1000 1000
9001 1 900}
800 1 8001
& 700r é 700
= S
H 600 5 600 -
£ =
@ (=2
3 500+ 3 500
£ £
B 400- 8 a00r
£ g
¢ 3001 & 300
200 1 200 -
100F k 100
o L L . . L L . 0
) 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Sampling time /s Sampling time /s
(a) CCID2 (b) CCID3

Figure 1: CCID comparison

CCID3 throughput, iperf sampled every 5s CCID3 throughput, iperf sampled every 5s
T T T T T T T T

380

360

Sampled throughput / kbps
w
S
o

Sampled throughput / kbps

N
®
=)

260 B 260

. I I I 240k L
500 1000 1500 2000 2500 80 850 900 950 1000 1050 1100 1150 1200
Sample time / s Sample time /s

240
0

Figure 2: Expanded view of initial CCID3 throughput variation

initial period with an average rate of 300 Kbit/s, with thgué&r rate variation detailed in Figure 2.
After a number of packets (around 65,500) the rate jumpeidésrate and remained steady, as seen
in Figure 1(b). This is strange behaviour, with the numbepafkets being indicative with a 16-bit
overflow perhaps, but there has been a lot of patches prodac&{CI1D3 recently which have not
yet made it into the stable Linux tree. Using a developmem &nd patches from numerous authors
changes the CCID3 behaviour completely. The most apptepr@mment to make is that CCID3 is
developing and the performace of current stable kernelstigwdicative of what is beiachievedved
by developers.

6.2 Testsover extended networks

Over a transatlantic connection, with end-hosts in Mantehnesnd Chicago, using UDP and
TCP we can achieve line-rate throughput. Although the hadkack performance of DCCP be-

Testing of DCCP at the Application Level Richard Hughes-Jones

tween identical systems gave line-rate, over the 94 msadtkmdic lightpath only a steady 130
Mbit/s was attained.

The performance of DCCP seemed to be CPU limited at the sewidtbrone CPU showing
an average of 98% load, compared to the load at line-rate-tumabkck of 82%. Increased CPU
load with increasing round-trip time can sometimes be ofekwith TCP flows but it is not im-
mediately obvious that this should be the case with DCCPtanaurious that the effect seems so
dramatic. The performance of DCCP needs to be investigattdef over different distances and
with different systems. CPU load profiles can hopefully gitlrther useful information about the
performance of DCCP.

7. Developinganew CCID

VLBI has a clear requirement to move constant bit-rate dathaan tolerate high-levels of
packet loss, making UDP seem like the ideal transport pobt@ather applications have similar re-
guirements, with streaming media and VoIP being examplepplications where constant bit-rate
can be advantageous and packet loss is often tolerable. Wdavikere is concern from network
providers that UDP traffic could overwhelm other traffic anedoad the network. Concerns and
opinions have been voiced and mitigating options have b&mugsed at recent meetings such as
the EXPReS & EVN-NREN meeting in Zaandan, NL and PFLDnet 2081 F workshop in Ma-
rina Del Rey, US, with input from Kees Neggers, SURFnet; Glamer, AARNET,; Aaron Falk,
IRTF Chair. One option that the authors support is to use D@E@Bmbination with a new CCID,
initially given the nameSafeUDP. The proposed CCID aims to address the concerns expresses
about using plain UDP by implementing something “UDP likeit kvith network protection.

SafeUDP would use the DCCP ACK mechanism to detect congedttiowing which the
congestion would be evaluated: to ensure that congestioatis the end-host and to determine
whether the congestion is transient. This evaluation steyséful to remove the assumption that
all losses are congestion events, which is a conservatstgrgstion but in some circumstances of-
ten unnecessarily detrimental to performance. The agjgitavould be notified of the congestion
through modified API calls, witlsendto andrecv_from, etc. having new return codes. The appli-
cation can then take action, with the CCID dropping inputrfrime application and informing the
application that it has done so if no action is taken. Thigidédeing worked on with the long-term
aim of a draft RFC.

8. Conclusions

The Linux implementation of DCCP is almost certainly the tmoature implementation avail-
able. Once we had established a stable test bed we investitieg performance of DCCP using
CCID2 and CCID3 with tests conducted primarily using the egramDCCPmon, a port of
existing applicationJDPmon. Apart from minor troubles due to omissions or changes toAtRe
the port was relatively straight-forward.

We have seen that the back-to-back performance of DCCP @@ip2 is good, achieving
line-rate for extended (multiple hour) back-to-back, meyrm-memory transfers. The throughput

Testing of DCCP at the Application Level Richard Hughes-Jones

of CCID3 was generally lower though there is much currenettgyment with performance chang-
ing with every patch. Given the amount of patches being eteby developers it is uncertain at
what speed the CCID3 implementation in the stable kernélditelop.

Tests of CCID2 over extended networks have been quite lihtibedate, with early results
showing that DCCP uses much more CPU time and achieves a lateeiover a transatlantic
lightpath. A rate of 130 Mbit/s to compare with 940 Mbit/s kdo-back has been seen, with
further work needed to fully assess DCCP performance oveg-tlistances.

achieveive a stable test setup has not been trivial and #nersome issues still to be resolved.
We hope that our investigations of the issues with DCCP onsgatems can help improve the
implementation and make DCCP work “out-of-the” box on moystems. Working round the
issues we encountered revealed a protocol implementaiatnwe look forward to investigating
more fully in the near future. Many applications can benefif DCCP and we hope to extend the
utility by considering the concerns of and working with netwmanagers to build a new CCID.

References

[1] R. Hughes-Jone§)CCPmon Home Page. Available at :
http://www.hep.man.ac.uk/u/rich/Tools_Software/dogm.html

[2] National Laboratory for Applied Network Resear®l, ANR/DAST : Iperf. Available at :
http://dast.nlanr.net/Projects/Iperf/

