
P
o
S
(
E
S
L
E
A
)
0
0
6

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Using UDT for High Energy Physics Data Transport

Barney Garrett1
The University of Edinburgh

James Clerk Maxwell Building, Mayfield Road, Edinburgh. EH54 6TD. UK

E-mail: barney.garrett@ed.ac.uk

Brian Davies
Lancaster University

Department of Physics, Lancaster. LA1 4YB. UK

E-mail: b.g.davies@lancaster.ac.uk

eScience applications, in particular High Energy Physics, often involve large amounts of data
and/or computing and often require secure resource sharing across organizational boundaries,
and are thus not easily handled by today's networking infrastructures. By utilising the switched
lightpath connections provided by the UKLight network it has been possible to research the use
of alternate protocols for data transport. While the HEP projects make use of a number of
middleware solutions for data storage and transport, they all rely on GridFTP for WAN
transport. The GridFTP protocol runs over TCP as the layer 3 protocol by default, however with
the latest released of the Globus toolkit it is possible to utilise alternate protocols at the layer 3
level. One of the alternatives is a reliable version of UDP called UDT. This report presents the
results of the tests measuring the performance of single-threaded file transfers using GridFTP
running over both TCP and the UDT protocol.

Lighting the Blue Touchpaper for UK e-Science - Closing Conference of ESLEA Project
The George Hotel, Edinburgh, UK
26-28 March, 2007

1 Speaker

P
o
S
(
E
S
L
E
A
)
0
0
6

Using UDT for HEP Data Transport Barney Garrett

 2

1. Introduction

TCP uses what it calls the congestion window to determine how many packets can be sent
at one time. The maximum congestion window is related to the amount of buffer space that the
kernel allocates for each socket. If the buffers are too small for the network connection the TCP
congestion window will never fully open up resulting in never reaching the maximum potential
of the network connection. In Long Fat Networks (LFN), such as UKLight the default kernel
settings within Linux are inadequate. The Linux kernel can be tuned [1] for LFN’s with the
Bandwidth Delay Product (BDP) being used to give an appropriate buffer size. This is
calculated using:

BDP (bytes) = Bandwidth (bytes) * RTT (seconds)

The socket receive buffer space is shared between the application and kernel. TCP
maintains part of the buffer as the TCP window, this is the size of the receive window
advertised to the other end. The rest of the space is used as the "application" buffer, used to
isolate the network from scheduling and application latencies. By default this overhead is a
quarter of the buffer space that the kernel is configured to use.

The txqueuelen is another buffer in the kernel stack that can affect performance; especially
of TCP transfers. When the system is sending out too much data from the IP layer to the
Ethernet device driver layer, this buffer, txqueuelen, may overflow. In TCP, this has the effect
of a congestion event causing the congestion window to halve.

As can be seen from this description achieving the maximum throughput on a LFN
requires an amount of work by the administrator of each end host involved, and if multiple links
with different characteristics are involved the settings used may be suboptimal. This work can
be avoided by creating multiple simultaneous connections however this can lead to other issues
including file fragmentation if using multiple streams for a single bulk data move.

The aim of these experiments is to provide an alternative bulk transport mechanism that

can be dropped into a running environment and provide high speed transport without requiring
significant tuning to achieve maximum performance.

1.1 UDT

UDT [2] is an application level data transport protocol which uses UDP to transfer bulk
data and it has its own reliability control and congestion control mechanism. It is not only for
private or QoS-enabled links, but also for shared networks since it is TCP friendly.

1.2 GridFTP and Globus XIO

The Globus toolkit [3] provides the data management component GridFTP and a common
runtime component XIO. GridFTP is a high-performance, secure, reliable data transfer protocol
base on FTP that is optimized for high-bandwidth wide-area networks. Globus XIO is an
extensible input/output library written in C for the Globus Toolkit. It provides a single API that
supports multiple protocols, with these protocol implementations encapsulated as drivers. XIO

P
o
S
(
E
S
L
E
A
)
0
0
6

Using UDT for HEP Data Transport Barney Garrett

 3

drivers can be written as atomic units and stacked on top of one another. The latest Globus
implementation of the GridFTP server implements XIO which allowed the replacement of TCP
with UDT as the layer 3 protocol for the purposes of these tests.

2. System Component Testing

The hardware configuration for these tests is two Supermicro X6DHE-G2’s with dual
Xeon 3.2Ghz dual core CPUs, 2GB ECC DDR RAM, LSI MegaRAID SATA 300-8x RAID
controller. The disks are six Western Digital Raptor 74GB SATA disks connected to the RAID
controller and a seventh Western Digital 80GB SATA disk as the system Disk. The RAID
controller is seated in PCI-X slot 1 so that it is on a separate PCI bus interface to the Gigabit
LAN connection and thus not competing for bandwidth on the bus.

2.1 Disk Subsystem

The disk subsystems were tested using IOZone [4] which is a file system benchmark tool.
It generates and measures a variety of file operations including write, rewrite, read and reread.

For the results to have the maximum relevance to the production systems used by the
GridPP sites we configured the disks for RAID 5 and used an ext3 file system. IOZone tests
were performed using the command:

iozone –a –g 16G –i 0 –i 1

 These showed that once the file size exceeded the cache size write speeds in the order of
125MB/s [Figure 1] and read speeds of approximately 155MB/s [Figure 2] are possible, which
is just fast enough so as not to be the bottleneck on a 1Gb/s network connection.

Figure 1

Figure 2

2.2 Networking

The raw network link was tested using Iperf [5] for the TCP and UDP protocols and
XIOperf [6] for the UDT protocol. XIOperf is a tool similar to Iperf, and measures the
performance characteristics of a transfer and reports them to the user. It is written on top of
Globus XIO so it has all of the dynamically loadable transport driver functionality which

P
o
S
(
E
S
L
E
A
)
0
0
6

Using UDT for HEP Data Transport Barney Garrett

 4

allowed the testing of the UDT driver that will be used in GridFTP in later testing. These tests
were carried out to profile the UKLight connection and set the baseline for later comparisons.

For the TCP tests tuning was carried out to determine what was required to achieve
maximum throughput for a single transfer using only a single stream. Using the calculation for
BDP:

BDP (bytes) = Bandwidth (bytes) * RTT (seconds)
BDP = 134217728 * 0.01
BDP = 1342177.28

Multiple test runs were made using multiples of the BDP to determine the effect on the
throughput. TCP transfers were tested both with the buffer sizes as calculated above and then
also taking into account the overhead that is reserved for the application.

Figure 3 shows the results of these tests. It can be seen that without any tuning of the
kernel UDP, which features no congestion control and is not a reliable protocol, is capable of
957Mb/s which is about 97% of the available bandwidth, UDT is slightly slower at 905Mb/s
which is about 92% of its available bandwidth, and finally TCP only manages to achieve
62Mb/s or about 6%. It is only after the buffer sizes have been increased to over 1.5 times the
BDP corrected for overheads that TCP reaches its maximum performance of 941Mb/s, almost
matching the performance of UDP.

Figure 3

3. Putting it all together

Once the baseline performance of the individual components had been determined tests
began on actual file transfers using GridFTP with both UDT and TCP and the layer 3 transport
protocol. The first test runs were made using /dev/zero and /dev/null to determine what effect
using GridFTP would have on memory to memory transfers, similar to those done using Iperf
and Ieper, and they showed that there was a slight drop in throughput when using GridFTP.

0

200

400

600

800

1000

1200

TCP Buffer Size (x BDP)

M
b

/s

TCP 62 229 454 672 902 941

TCP+SF 108 304 597 903 941 941

UDP 957 957 957 957 957 957

UDT 905 905 905 905 905 905

default 0.5 1.0 1.5 2.0 2.5

P
o
S
(
E
S
L
E
A
)
0
0
6

Using UDT for HEP Data Transport Barney Garrett

 5

Finally transfers were done from file system to file system, again using increasing kernel
buffer sizes to maximize the throughput for TCP. Figure 4 show the complete results.

Figure 4

By looking at these figures it can be seen that when the network and the file system are

being loaded at the same time there is a bottleneck causing a significant slowdown in the
throughput of the transfer. Further testing showed that while receiving data from the network
and writing to disk was possible at line rate reading data from the disk while sending it to the
network is only possible at about 50% - 70% of the available bandwidth. Why this is the case is
unknown at present.

References

[1] TCP performance tuning - how to tune Linux http://www.acc.umu.se/~maswan/linux-netperf.txt

[2] UDT http://udt.sourceforge.net/

[3] Globus Toolkit http://www.globus.org/

[4] IOZone http://www.iozone.org/

[5] Iperf http://dast.nlanr.net/Projects/Iperf/

[6] XIOperf http://globus.org/alliance/publications/papers/xioperf.pdf

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

TCP Buffer Size (x BDP)

M
b

/s

TCP zero->null 52.81 200.91 339.43 644.51 865.59 897.34

TCP File Transfer 59.80 225.49 428.59 536.21 548.13 529.83

TCP+SF zero->null 95.76 238.30 506.59 864.85 897.35 897.35

TCP+SF File Transfer 95.76 238.30 524.44 551.60 532.46 532.46

UDT zero->null 904.39 904.43 904.43 904.40 904.45 904.47

UDT File Transfer 631.52 678.78 687.18 684.63 709.86 720.11

default 0.5 1.0 1.5 2.0 2.5

