PROCEEDINGS

OF SCIENCE

Using UDT for High Energy Physics Data Transport

Barney Garrett'

The University of Edinburgh

James Clerk Maxwell Building, Mayfield Road, Edinburgh. EH54 6TD. UK
E-mail: bar ney. garrett @d. ac. uk

Brian Davies

Lancaster University

Department of Physics, Lancaster. LA1 4YB. UK
E-mail: b. g. davi es@ ancast er. ac. uk

eScience applications, in particular High Energydfts, often involve large amounts of data
and/or computing and often require secure resosiheging across organizational boundaries,
and are thus not easily handled by today's netwgrkifrastructures. By utilising the switched
lightpath connections provided by the UKLight netiwv@ has been possible to research the use
of alternate protocols for data transport. WhHe HEP projects make use of a number of
middleware solutions for data storage and transpbey all rely on GridFTP for WAN
transport. The GridFTP protocol runs over TCP adldlyer 3 protocol by default, however with
the latest released of the Globus toolkit it isqilole to utilise alternate protocols at the layer 3
level. One of the alternatives is a reliable varsié UDP called UDT. This report presents the
results of the tests measuring the performancénglesthreaded file transfers using GridFTP
running over both TCP and the UDT protocol.

Lighting the Blue Touchpaper for UK e-Science - Closing Conference of ESLEA Project
The George Hotel, Edinburgh, UK
26-28 March, 2007

1 speaker

© Copyright owned by the author(s) under the terntheiCreative Commons Attribution-NonCommercial-®#dike Licence. http://pos.sissa.it



Using UDT for HEP Data Transport Barney Garrett

1. | ntroduction

TCP uses what it calls the congestion window termheine how many packets can be sent
at one time. The maximum congestion window is egldb the amount of buffer space that the
kernel allocates for each socket. If the buffeestao small for the network connection the TCP
congestion window will never fully open up resutfim never reaching the maximum potential
of the network connection. In Long Fat Network&K), such as UKLight the default kernel
settings within Linux are inadequate. The Linuxne can be tungdl] for LFN’s with the
Bandwidth Delay Product (BDP) being used to give sqpropriate buffer size. This is

calculated using:
BDP (bytes) = Bandwidth (bytes) * RTT (seconds)

The socket receive buffer space is shared betweenapplication and kernel. TCP
maintains part of the buffer as the TCP windows thd the size of the receive window
advertised to the other end. The rest of the spacsed as the "application" buffer, used to
isolate the network from scheduling and applicataencies. By default this overhead is a
quarter of the buffer space that the kernel isigonéd to use.

The txqueuelen is another buffer in the kernelksthat can affect performance; especially
of TCP transfers. When the system is sending omtnioich data from the IP layer to the
Ethernet device driver layer, this buffer, txquemelmay overflow. In TCP, this has the effect
of a congestion event causing the congestion wintddvalve.

As can be seen from this description achieving ieximum throughput on a LFN
requires an amount of work by the administratoeath end host involved, and if multiple links
with different characteristics are involved thetisgls used may be suboptimal. This work can
be avoided by creating multiple simultaneous cotioes however this can lead to other issues
including file fragmentation if using multiple sénms for a single bulk data move.

The aim of these experiments is to provide an radiire bulk transport mechanism that
can be dropped into a running environment and gdeotigh speed transport without requiring
significant tuning to achieve maximum performance.

11 ubT

UDT[2] is an application level data transport protoadilich uses UDP to transfer bulk
data and it has its own reliability control and gestion control mechanism. It is not only for
private or QoS-enabled links, but also for sharetvarks since it is TCP friendly.

1.2 GridFTP and Globus XI1O

The Globus toolk[B] provides the data management component GridkidPa common
runtime component XIO. GridFTP is a high-perform@arsecure, reliable data transfer protocol
base on FTP that is optimized for high-bandwidtidesdrea networks. Globus XIO is an
extensible input/output library written in C foretilobus Toolkit. It provides a single API that
supports multiple protocols, with these protocopliementations encapsulated as drivers. XIO

2



Using UDT for HEP Data Transport Barney Garrett

drivers can be written as atomic units and staakedop of one another. The latest Globus
implementation of the GridFTP server implements Xi@ich allowed the replacement of TCP
with UDT as the layer 3 protocol for the purpostthese tests.

2. System Component Testing

The hardware configuration for these tests is twpesmicro X6DHE-G2's with dual
Xeon 3.2Ghz dual core CPUs, 2GB ECC DDR RAM, LSIgsRAID SATA 300-8x RAID
controller. The disks are six Western Digital Repgt4GB SATA disks connected to the RAID
controller and a seventh Western Digital 80GB SAdi8k as the system Disk. The RAID
controller is seated in PCI-X slot 1 so that ibrs a separate PCI bus interface to the Gigabit
LAN connection and thus not competing for bandwiatththe bus.

2.1 Disk Subsystem

The disk subsystems were tested using IOnehich is a file system benchmark tool.
It generates and measures a variety of file omeraiincluding write, rewrite, read and reread.

For the results to have the maximum relevance ¢opttoduction systems used by the
GridPP sites we configured the disks for RAID 5 aiseéd an ext3 file system. 10Zone tests
were performed using the command:

iozone —a—-g 16G - 0—il

These showed that once the file size exceededaittge size write speeds in the order of
125MB/s [Figure 1] and read speeds of approximat&yMB/s [Figure 2] are possible, which
IS just fast enough so as not to be the bottlenack 1Gb/s network connection.

Tozone performance: urite Tozone performance: read
450000 3500000

400000
3000000

3H0000 |
2500000

300000

£ 250000 4 g 2000000
g 3

k4 4

£ B
< )
2 200000 - £ 1500000
150000 -
1000000
100000 -

00000
50000

o T T T T T T T T o T T T T T T T T
=1 256 1029 4098 15384 5536 262144 1048576 4194304 &4 256 1024 4096 16384 65536 262144 1048576 4194304

File size in KBytes File size in KBytes

Figure1 Figure 2

2.2 Networking

The raw network link was tested using Ipgt for the TCP and UDP protocols and
XlIOperf [6] for the UDT protocol. XlOperf is a tool similao Iperf, and measures the
performance characteristics of a transfer and tegbem to the user. It is written on top of
Globus XIO so it has all of the dynamically loadalitansport driver functionality which



Using UDT for HEP Data Transport Barney Garrett

allowed the testing of the UDT driver that will beed in GridFTP in later testing. These tests
were carried out to profile the UKLight connectiamd set the baseline for later comparisons.

For the TCP tests tuning was carried out to deteemihat was required to achieve
maximum throughput for a single transfer using anlyingle stream. Using the calculation for
BDP:

BDP (bytes) = Bandwidth (bytes) * RTT (seconds)
BDP = 134217728 * 0.01
BDP =1342177.28

Multiple test runs were made using multiples of 8BP to determine the effect on the
throughput. TCP transfers were tested both wightthiffer sizes as calculated above and then
also taking into account the overhead that is veskefor the application.

Figure 3 shows the results of these tests. Itbmieen that without any tuning of the
kernel UDP, which features no congestion contral snnot a reliable protocol, is capable of
957Mb/s which is about 97% of the available bandwidJDT is slightly slower at 905Mb/s
which is about 92% of its available bandwidth, diwhlly TCP only manages to achieve
62Mb/s or about 6%. It is only after the buffezesi have been increased to over 1.5 times the
BDP corrected for overheads that TCP reaches itsnmian performance of 941Mb/s, almost
matching the performance of UDP.

1200

1000 1
800

600 /
400

default 0.5 1.0 15 2.0 25
——TCP 62 229 454 672 902 941
—®—TCP+SF 108 304 597 903 941 941
ubP 957 957 957 957 957 957
uDT 905 905 905 905 905 905
TCP Buffer Size (x BDP)

Mb/s

Figure 3

3. Putting it all together

Once the baseline performance of the individual paments had been determined tests
began on actual file transfers using GridFTP witkhdJDT and TCP and the layer 3 transport
protocol. The first test runs were made using /oo and /dev/null to determine what effect
using GridFTP would have on memory to memory trarssfsimilar to those done using Iperf
and leper, and they showed that there was a sligiptin throughput when using GridFTP.

4



Using UDT for HEP Data Transport Barney Garrett

Finally transfers were done from file system te Slystem, again using increasing kernel
buffer sizes to maximize the throughput for TCRguFe 4 show the complete results.

1000.00

900.00 « 93 « 93 %

800.00 1 //
e
700.00 —
600.00 /
e

500.00 q

Mb/s

400.00 A

300.00

200.00 —
100.00 /

0.00

default 05 1.0 15 2.0 25
——TCP zero->null 52.81 200.91 339.43 644.51 865.59 897.34
—®—TCP File Transfer 59.80 225.49 428.59 536.21 548.13 529.83
TCP+SF zero->null 95.76 238.30 506.59 864.85 897.35 897.35
TCP+SF File Transfer 95.76 238.30 524.44 551.60 532.46 532.46
—*%—UDT zero->null 904.39 904.43 904.43 904.40 904.45 904.47
—e— UDT File Transfer 631.52 678.78 687.18 684.63 709.86 720.11

TCP Buffer Size (x BDP)

Figure4

By looking at these figures it can be seen thatnahe network and the file system are
being loaded at the same time there is a bottlemacising a significant slowdown in the
throughput of the transfer. Further testing showed while receiving data from the network
and writing to disk was possible at line rate ragdilata from the disk while sending it to the
network is only possible at about 50% - 70% ofdkailable bandwidth. Why this is the case is
unknown at present.

References

[1] TCP performance tuning - how to tune Linuxp://www.acc.umu.se/~maswan/linux-netperf.txt

[2] UDT http://udt.sourceforge.net/

[3] Globus Toolkithttp://www.globus.org/

[4] 10Zonehttp://www.iozone.org/

[5] lIperf http://dast.nlanr.net/Projects/Iperf/

[6] XIOperfhttp://globus.org/alliance/publications/papers/dadpdf




