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1. Introduction

Transport coefficients characterize fluctuations and relaxation on longlength and time scales
in systems slightly away from thermal equilibrium. Consider a conserved current,∂tn + ∇ · j = 0,
in a system with a small nonuniformity in the densityn(t,x). To first approximation, a current will
form to wash out the imbalance:j = −D∇n + . . ., where the dots indicate higher order terms in
gradients. Combining the conservation law with this constitutive equation immediatelyyields the
diffusion equation∂tn = D∇2n. The proportionality factorD is the diffusion constant and is the
only quantity determined by the underlying microscopic theory: one may view it as alow-energy
constant. Similarly, consider the conserved energy-momentum tensorT µν . While in equilibrium
T i j = δ i jP, with P the pressure, a perturbation characterized by a nonuniform flow fieldu(t,x) will
change this to (in the local rest frame, whereT 0i = 0)

T i j = δ i jP−η
(

∂ iu j +∂ jui − 2
3

δ i j∂lu
l
)

−ζ δ i j∂lu
l + . . . . (1.1)

Again the dots indicate higher order terms in gradients. The coefficient of the traceless combina-
tion is the shear viscosityη andζ is the bulk viscosity. Combining energy-momentum conserva-
tion with the constitutive equation above yields the hydrodynamic equations, predicting e.g. sound
waves. In the context of thermal QCD one may therefore view hydrodynamics as thelow-energy
effective theory describing real-time dynamics at sufficiently large length and time scales. The
form of the hydrodynamic equations is fixed by combining exact conservation laws and constitu-
tive equations, which are obtained in a gradient expansion. In the latter, anumber oflow-energy
constants appear, determined by QCD: shear viscosityη , bulk viscosityζ , electrical conductivity
σ , diffusion constantsD, etc. In this talk I review the progress in determining these coefficients
from first principles.

The recent interest in transport in QCD and related theories is mainly due to the relativistic
heavy ion program at RHIC [1]. The remarkable effectiveness of ideal hydrodynamics in describing
heavy ion phenomenology [2, 3] suggests that transport coefficients are very small (when appro-
priately normalized). This in turns implies that thermalization times are short and interactions are
strong, suggesting that in the temperature range 1. T/Tc . 2 the quark-gluon plasma is not a
weakly coupled system of quarks and gluons, but instead strongly interacting (sQGP). A second
reason for interest in transport is the fertile applicability of gauge/gravity duality (or AdS/CFT
correspondence) to study strongly coupled thermal gauge theories in thehydrodynamic regime
[4]. This has led to many (semi-)analytical results for those theories that admit a gravity dual and
provides an important stimulus for QCD, where a gravity dual is not available. The best-known
example concerns the ratio of the shear viscosity and the entropy densitys,

η
s

=
1

4π
, (1.2)

which is obtained in all thermal gauge theories in the (strongly coupled) regimedescribed by a dual
gravity theory. This ratio is much smaller than in weakly coupled QCD, where

lim
g→0

η
s
∼ 1

g4 ln1/g
→ ∞. (1.3)

It is an open question what this ratio is in QCD just above the deconfinement transition. Below I
describe recent progress in lattice QCD that will bring us closer to answering that question.
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2. Transport coefficients at weak and strong coupling

According to the Kubo relations, transport coefficients are given by theslope of current-current
spectral functions, computed in thermal equilibrium, at vanishing energy. For example, the electri-
cal conductivityσ (or charge diffusion constantD times susceptibilityΞ) is determined by

σ = DΞ = lim
ω→0

ρ11(ω)

2ω
, (2.1)

where the current-current spectral function is given by

ρµν(ω) =
∫

d4xeiωt〈[ jµ(t,x), jν(0)]〉eq. (2.2)

For a single fermionic charge carrier with chargee the electromagnetic current readsjµ = eψ̄γµψ .
Similarly, the shear and bulk viscosities are given by

η = lim
ω→0

ρ12,12(ω)

2ω
, ζ =

1
9

lim
ω→0

ρ ii, j j(ω)

2ω
, (2.3)

in terms of the energy-momentum tensor spectral function

ρµν,ρσ (ω) =
∫

d4xeiωt〈[T µν(t,x),T ρσ (0)]〉eq. (2.4)

2.1 Weak coupling

At weak coupling transport coefficients can be computed using either kinetic theory or by
summing sets of Feynman diagrams. In this limit, transport coefficients are manifestly proportional
to the mean free path or the inverse collisional width 1/Γ. They are therefore very large and
inversely proportional to the coupling constants in the theory, see Eq. (1.3). In ultrarelativistic QCD
the shear viscosity, electrical conductivity and diffusion constants havebeen computed to leading-
logarithm order [5] and subsequently to full leading order [6] in the gauge coupling. The relevant
physics at leading-log are those 2↔ 2 scattering processes that are logarithmically sensitive to
infrared screening effects. The extension to full leading order requires, besides the other 2↔ 2
scattering processes, also the inclusion of specific particle number changing processes [7]. The
bulk viscosity is more complicated since particle number changing processes need to be included
from the start; the first calculation in QCD can be found in Ref. [8]. It is shown that a parametrically
correct estimate is given by

ζ ≈ 15η
(

1/3− v2
s

)2
, (2.5)

where for light quarks the speed of soundvs is determined byv2
s −1/3∼ β (g2) ∼ g4. The equiv-

alence between kinetic theory and diagram summation in thermal gauge theorieshas been demon-
strated in a number of papers [9, 10, 11, 12, 13]. A one-loop calculationis never sufficient; instead
an infinite set of ladder diagrams has to be taken into account.

A complete leading-order calculation is also possible in the largeN f limit, whereN f indicates
the number of flavours. This has been done using kinetic theory for massless quarks [14] and
extended to massive quarks using diagrams [15]. Only Coulomb scattering processes contribute.
Also in this limit one is effectively in the weakly coupled regime, sinceη/s ∼ N f → ∞.
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Figure 1: Typical skeleton diagram contributing to the shear viscosity in theO(N) model at largeN.

In all cases above only the leading-order result is known. This prevents any reasonable extrap-
olation to stronger coupling, unlike in the case of e.g. the pressure where the terms up tog6 ln1/g
are known [16]. Recently the first subleading correction to a transportcoefficient in a relativistic
field theory has been computed by Moore [17], namely to the shear viscosityin scalarφ4 theory.
The shear and bulk viscosity for single-component scalar theories havebeen computed a long time
ago to leading order at weak coupling using ladder diagram summation [18].In theO(N) model
the shear viscosity has also been found to leading order in the 1/N expansion [19], using similar
techniques as in largeN f gauge theories. It is shown in Ref. [17] that the first subleading correction
to the shear viscosity at weak coupling is sensitive to soft physics and canbe extracted from the
same set of diagrams that contribute at leading order by an expansion in terms of the thermal mass
mth/T ∼

√
λ . The result in theO(N) model, with aλ/(4!N)(φaφa)

2 interaction, reads [17]

η =
T 3

λ 2

3N3

N +2

(

3033.54+1548.3

√

(

1+
2
N

)

λ
72

+O(λ )

)

=
3N2T 3

λ 2

(

3033.54+1548.3

√

λ
72

+O(λ ,1/N)

)

, (2.6)

where the second line is valid in the combined largeN and weak coupling limit. As mentioned
above, the complete largeN result, without employing the weak-coupling expansion, is also known
[19]. This includes a resummation of the thermal mass to all orders, as well asthe inclusion of
other diagrams suppressed in the weak coupling limit, see Fig. 1. Therefore, an assessment of the
perturbative expansion can now be made. This is shown in Fig. 2, where the perturbative result

0 2.5 5 7.5 10

√λ(T)

1

1.2

1.4

1.6

1.8

η/
η 0

exact
perturbative

Figure 2: Shear viscosityη , normalized with the result at vanishing coupling, in theO(N) model as a
function of

√
λ : comparison between the perturbative [17] and the exact [19] result in the largeN limit.
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η/η0 = 1+#
√

λ is compared with the complete largeN result. Hereη0 is the result at vanishing
coupling, which is used for normalization. From the first two terms, it appears that the convergence
of the weak coupling expansion is not impressive. A possible approach toimprove the convergence
[17] would be to include the thermal mass without re-expanding, as has been tried for the pressure
[20]. How to include allO(λ ) effects is currently not known.

Considerable effort has been spent on nonrelativistic dynamics and diffusion of heavy quarks
(with Mq � T ). I will not discuss that here, but refer to Ref. [21] where definitionsand a leading-
order calculation of the momentum diffusion coefficient can be found, andto Ref. [22] for the first
next-to-leading order result at weak coupling.

2.2 Strong coupling

In order to complement weak coupling results as discussed above, it is desirable to have an
analytic method tailored for strongly coupled field theories. For a certain class of thermal gauge
theories such a method is available, via the gauge/gravity or AdS/CFT correspondence [23]. It uses
the duality between a field theory at finite temperature and black holes in AdS space described in
string theory. The best-known case relatesN = 4 supersymmetric Yang-Mills theory to type IIB
string theory on AdS5×S5, but there are many other field theories for which a gravity dual can be
found (but not QCD). The parameters in field theory, the number of colours Nc and the coupling
constantg2, are related to the parameters of string theory in AdS space. It turns out that the duality
is most powerful wheng2 is small, since then loops in the string theory are suppressed, but with the
’t Hooft coupling λ = g2Nc large, since then stringy effects are suppressed and the string theory
reduces to a supergravity theory. Strongly coupled gauge theories, withlarge ’t Hooft coupling,
are therefore the natural area of application. Using the gauge/gravity correspondence, it has been
shown that the field theories for which the duality holds behave hydrodynamically at large length
and time scales, which supports the framework of (nearly ideal) hydrodynamics to understand the
dynamics in thermal gauge theories at strong coupling.

The most famous example concerns the shear viscosity inN = 4 SYM. In the limit that both
Nc andλ go to infinity, it is equal to [24]

η =
π
8

N2
c T 3. (2.7)

In the same limit the entropy density is [25]

s =
π2

2
N2

c T 3 =
3
4

s
∣

∣

∣

λ=0
,

such that the ratio isη/s = 1/4π. This result for the ratio is universal and is achieved in all thermal
gauge theories that can be described by a gravity dual [26, 27]. The bulk viscosity vanishes due to
conformal invariance.

The shear viscosity inN = 4 SYM at strong coupling is another rare example of a transport
coefficient where the first subleading correction is known. One finds [28]

η =
π
8

N2
c T 3

(

1+
75ζ (3)

4λ 3/2
+ . . .

)

. (2.8)
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The first correction to the ratio then reads

η
s

=
1

4π

(

1+
135ζ (3)

8λ 3/2
+ . . .

)

. (2.9)

It has been conjectured that 1/4π is a lower bound for a wide class of systems, including e.g.
the quark-gluon plasma and trapped atomic gases [29, 26]. For a recentcritical assessment, see
Ref. [30].

Other transport coefficients that have been computed include theR-charge diffusion coefficient
and the bulk viscosity. These are not universal and depend on the theory under consideration. In
N = 4 SYM theR-charge diffusion constant, susceptibility and conductivity are given by[31]

D =
1

2πT
, Ξ =

N2
c T 2

8
, σ =

N2
c T

16π
. (2.10)

The bulk viscosity in a number of theories is discussed in Ref. [32]. For strongly coupled systems
it is proposed that it satisfies (cf. Eq. (2.5) and the absent square)

ζ ≥ 2η
(

1/3− v2
s

)

. (2.11)

Also heavy quark dynamics has been studied extensively in strongly coupledN = 4 SYM, see e.g.
Ref. [33] for a clear discussion.

Due to the interest inN = 4 SYM as a testbed for thermal field dynamics, various quantities
have also been studied at weak coupling. The ratioη/s has been computed in this theory to full
leading order in the smallλ limit (the result is independent ofNc) and compared with the same
quantity in QCD [34]. Heavy quark diffusion has been studied to leading order at weak coupling
in Ref. [35].

3. Spectral functions

So far, in discussing transport coefficients, the focus has been on thezero-energy limit of
spectral functions. In this section I give a (restricted) review of spectral functions at arbitraryω ,
motivated mainly by hydrodynamic structure at weak and strong coupling. This will turn out to be
useful for lattice QCD studies of spectral functions, to be discussed next.

In the weak coupling limit, current-current spectral functions have a characteristic energy de-
pendence [36]. At large energy they increase asωn, where the powern is determined by the (mass)
dimension. For example, the energy-momentum tensor spectral function (2.4) increases asω4 and
the EM current spectral function (2.2) asω2 (unless there is a cancelation between components).
At small energies, there is a transport peak. In free field theory, this peak manifests itself as a
singular term,

ρ(ω)

ω
∼ 2πδ (ω), (3.1)

reflecting that in a free theory the mean free path is infinite and transport coefficients diverge.
Interactions regulate this singular behaviour and after the resummation of thecollisional widthΓ,
the transport peak is modified to

ρ(ω)

ω
∼ 2Γ

ω2 +Γ2 . (3.2)

6
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Figure 3: Shear viscosity:ρ(ω)/ωT 3 vs. ω/T in QCD (sketched) for two values of the collisional width
Γ/T = 0.1,0.5 (left) and inN = 4 SYM at strong coupling (right).
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Figure 4: Charge diffusion:ρ(ω)/ωT vs. ω/T in QCD (sketched) for two values of the collisional width
Γ/T = 0.1,0.5 (left) and inN = 4 SYM at strong coupling (right).

For simplicity, I parametrized the effect of interactions with a single constant width Γ; in reality
the width depends on the momentum of the (quasi-)particles contributing to transport. At weak
coupling the collisional widthΓ ∼ g4T : therefore the transport peak is narrow (∼ g4) and high
(∼ 1/g4).

The ω dependence of spectral functions of conserved charges, such asE =
∫

x T 00(t,x) or
Q =

∫

x j0(t,x), is completely fixed by the conservation laws. For example, the spectral function for
the total charge density reads

ρ00(ω)

ω
= Ξ2πδ (ω), (3.3)

whereΞ is again the susceptibility. This ensures that unequal-time correlation functions, such
〈Q(t)Q(0)〉, are in fact constant and equal toV T Ξ, whereV is the spatial volume and it is assumed
that〈Q〉 = 0. Here I only discuss spectral functions at zero spatial momentum; for nonzero spatial
momentum see e.g. Ref. [37].

Combining the rising high-energy part and the transport peak at small energies yields spectral
functions as shown in Fig. 3 (left) for the energy-momentum tensor (in the channel relevant for the

7
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shear viscosity) and Fig. 4 (left) for the EM current (charge diffusion). Here the width is taken
as a free parameter and artificially increased to larger values (Γ/T . 1), while keeping the rest of
the spectral function unchanged. As a result the transport peak, which is narrow at weak coupling
(Γ/T � 1), becomes less singular and gets smeared out.

Interestingly enough, this behaviour can be compared with spectral functions computed in
N = 4 SYM in the limit of largeNc and large ’t Hooft couplingλ , using gauge/gravity duality [38,
39]. The energy-momentum tensor spectral function has to be computed numerically by solving an
ordinary differential equation, but for theR-current the analytical result is known and reads [40]

ρ(ω) =
N2

c

16π
ω2sinh(ω/2T )

cosh(ω/2T )−cos(ω/2T )
. (3.4)

These spectral functions are shown in Figs. 3 and 4 (right). Rather thandividing by powers ofNc, I
have simply putNc = 3. It is clear that at strong coupling the transport peak is no longer separated
from the high-energy contribution and the spectral functions go smoothly toω = 0. The intercept
is of course proportional to the shear viscosity and the conductivity respectively.

Comparing the spectral functions on the left with those on the right makes it interesting to
speculate what happens in QCD in the strong coupling regime above the deconfinement transition.

4. Transport from lattice QCD

We have seen that weak-coupling methods are probably not applicable in the interesting tem-
perature regime of QCD probed by current heavy ion collisions. Furthermore, these calculations
are so involved that in most cases only the leading-order result is currently known; it is an open
question how to determine subleading corrections. On the other hand, the strong-coupling results
discussed above are obtained in theories that are not QCD. So the important question is what can
be said about transport in QCD when 1. T/Tc . 3, using nonperturbative lattice simulations.

The euclidean correlator calculated in numerical simulations is related to the corresponding
spectral function via a dispersion relation,

GE(iωn) =
∫ ∞

−∞

dω
2π

ρ(ω)

ω − iωn
, (4.1)

whereωn = 2πnT (n ∈ Z) are the bosonic Matsubara frequencies. In euclidean time, with 0≤ τ <

1/T , this relation becomes

GE(τ) =
∫ ∞

0

dω
2π

K(ω ,τ)ρ(ω), (4.2)

with the kernel

K(ω ,τ) =
cosh[ω(τ −1/2T )]

sinh(ω/2T )
= [1+nB(ω)]e−ωτ +nB(ω)eωτ , (4.3)

wherenB(ω) = 1/(eω/T − 1) is the Bose distribution. The first expression for the kernel shows
the characteristic euclidean time dependence, while the second expression emphasizes that the
correlator and its spectral function are essentially related via a Laplace transform, made periodic to
satisfy the Kubo-Martin-Schwinger (periodicity) condition.

8
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If the euclidean correlator is known analytically, the spectral function cansimply be obtained
by analytic continuation,

ρ(ω) = 2ImGE(iωn → ω + iε). (4.4)

However, ifGE(τ) is determined numerically on a lattice withNτ = 1/aT points in the euclidean
time direction (a is the temporal lattice spacing), Eq. (4.1) has to be inverted by some other means.
This is an ill-posed inversion problem, sinceGE(τ) is known at, say,O(10) data points, whereas
ρ(ω) is needed atO(103) values (after imposing a high-energy cutoffωmax and discretizing the
resulting finite interval 0< ω < ωmax).

One possible solution is to provide an Ansatz for the spectral function, with asmall number of
free parameters. In this case it is important to be able to judge the applicability ofthe Ansatz. An
orthogonal approach is to avoid giving functional forms but only supplyaminimal amount of prior
information, such as positivity (ωρ(ω) ≥ 0) and asymptotic behaviour (ρ(ω) ∼ ωn for largeω).
Methods based on this approach are usually collectively referred to as Bayesian techniques.

For a weakly coupled quark-gluon plasma, the extraction of transport coefficients is notori-
ously difficult, since euclidean correlators are remarkably insensitive to the structure of spectral
functions at energiesω � T [36, 41]. However, at stronger coupling the transport peak is much
broader and the smallω limit is no longer singular. As discussed above, smooth spectral functions
are also found inN = 4 SYM at strong coupling. This opens up the possibility that transport
coefficients are accessible in lattice QCD above the deconfinement transition.

So far the number of papers in the literature that have attempted to extract transport coeffi-
cients from the lattice in a head-on approach is very small. A first attempt to measure transport
coefficients can be found in the pioneering paper by Karsch and Wyld, using an Ansatz [42]. This
method was followed by Nakamura and Sakai for the shear and bulk viscosity [43]. For a critical
discussion of the Ansatz, see Ref. [36]. S. Gupta used Bayesian methods to isolate the transport
contribution at small energies in the case of the electrical conductivity [44]. In the past six months,
two significant steps have been made. A standard approach to perform the analytical continuation
using Bayesian techniques is known as the Maximum Entropy Method (MEM),to be discussed
below. It was known from previous work that MEM performs poorly at small energies. Aarts,
Allton, Foley, Hands and Kim have identified and resolved a numerical instability in MEM in the
limit that ω → 0 and applied the new formulation to obtain the electrical conductivity [45]. Pre-
cisely determined correlators are essential to have control over the analytic continuation; while for
the electrical conductivity this is not a problem, for the shear and bulk viscosity standard mea-
surement techniques are insufficient. Meyer has applied a two-level algorithm to better determine
energy-momentum correlators and found a result for the shear viscosity[46]. All calculations to
date have been performed in quenched QCD, so one may think of the electrical conductivity in
pure gauge theory as representing the transport properties of a singleelectrically charged quark
diffusing through a gluon plasma.

In the following I describe in some detail the Maximum Entropy Method and indicate why
the standard algorithm is unstable in the smallω region [45]. In MEM one reconstructs themost
probable spectral function by extremizing the probability distributionP[ρ|GH], i.e. the probability
to find ρ, given the correlatorG and prior informationH. Using an identity for conditional prob-
abilities, P[ρG|H] = P[ρ|GH]P[G|H] = P[G|ρH]P[ρ|H], P[ρ|GH] is written as the product of a

9



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
0
1

Transport and spectral functions in high-temperature QCD Gert Aarts

0 1 2 3 4 5

aω

-0.1

0

0.1

0.2

0.3
u i(ω

)

u
1
(ω)

u
2
(ω)

u
3
(ω)

u
4
(ω)

0 0.05 0.1 0.15

-0.1

0

0.1

u
1
(ω)

u
2
(ω)

u
3
(ω)

u
4
(ω)

original kernel

0 1 2 3 4 5

aω

-0.1

0

0.1

0.2

0.3

u i(ω
)

u
1
(ω)

u
2
(ω)

u
3
(ω)

u
4
(ω)

0 0.05 0.1 0.15
-0.15

-0.1

-0.05

0
u

1
(ω)

u
2
(ω)

u
3
(ω)

u
4
(ω)

redefined kernel

Figure 5: First four basis functionsui(ω) in the singular value decomposition as a function ofaω for
aωmax = 5, Nω = 1000,Nτ = 24, using the standard (left) and the redefined kernel (right). The inset shows
a blow-up of the small energy region.

standard likelihood function,P[G|ρH] ∼ e−L (χ2 fit), and a prior probability,P[ρ|H] ∼ eαS which
is independent of the data.P[G|H] is a normalization factor. The prior information is encoded in
the entropy term,

S =
∫

dω
2π

[

ρ(ω)−m(ω)−ρ(ω) log
ρ(ω)

m(ω)

]

, (4.5)

via the default modelm(ω). Therefore, the combined function to extremize isP[ρ|GH] ∼ e−L+αS,
whereα determines the relative weight of the data versus the prior information [47].

The most important aspect for my purpose here is thereduction step. Recall that after dis-
cretizationρ(ω) is wanted atNω = O(103) values whereas the correlator is only known atO(10)
points. I denote withN the number of time slices included in the analysis; due to reflection sym-
metry,N ≤ Nτ/2. To make this well-defined, the number of coefficients parametrizing the spectral
function cannot exceedN, or in other words,ρ(ω) has to be restricted to an (at most)N dimen-
sional subspace. In Bryan’s algorithm [48] this is achieved via a singular value decomposition
(SVD) of the kernelK(ωn,τi). Viewed as anNω ×N matrix, the kernel is written asK = UWV T ,
whereU is anNω ×N matrix, with UTU = 11N×N , W is a diagonalN ×N matrix, andV is an
orthogonalN ×N matrix. TheN dimensional subspace is spanned by the column vectors ofU :
ui(ωn) = Uni. These basis vectors are orthogonal but not complete. An analysis of the extremum
conditions shows that it is natural to write the spectral function in terms of these basis vectors
asρ(ω) = m(ω)exp∑N

i=1 ciui(ω). This ensures positivity and provides the actual reduction step.
Extremizing the probability distribution leads to nonlinear equations for theN coefficientsci.

The first four basis functions in the SVD are shown in Fig. 5 (left), for a typical choice of
N = Nτ/2, Nω , andωmax. A blow-up of the small energy region reveals that the basis functions
appear to diverge whenω → 0, although they are normalized (the smallest energy included here is
a∆ω = aωmax/Nω = 0.005). This apparent divergence is due to the singular behaviour of thekernel
(4.3): in the limit thatω → 0 one finds thatK(ω ,τ) = 2T/ω +O (ω/T ). Note that the leading
singular term isτ independent; allτ independence resides in the subleading terms. The behaviour
of the basis functions is therefore indicative of a real problem, which cannot be solved by e.g.
decreasing∆ω . In actual applications of MEM, we (and others) found irregular behaviour at small

10
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Figure 6: Current-current spectral functionρ(ω)/ωT , whereji = ψ̄γ iψ, as a function ofω/T in quenched
QCD for T/Tc ∼ 1.5 (hot,Nτ = 24) and 2.25 (very hot,Nτ = 16). The intercept atω = 0 is proportional to
the electrical conductivity. Results are shown forNω = 1000, 2000 andb = 1.0, 0.5, 0.1 at fixedaωmax = 5.

ω , in particular at the smallest nonzero value ofω . Needless to say that this prevents access to
the transport properties encoded in euclidean correlators. It is worth pointing out that this problem
only appears at finite temperature, since at zero temperature the kernel reduces toK(ω ,τ) = e−ωτ

and the limitω → 0 is smooth. It is a manifestation of the fact that the limitsω → 0 andT → 0 do
not commute, which is well-known in thermal field theory.

Once the problem is identified, it is straightforward to solve it. The 1/ω divergence can be
avoided by defining

K(ω ,τ) =
ω
2T

K(ω ,τ), ρ(ω) =
2T
ω

ρ(ω). (4.6)

SinceK(ω ,τ)ρ(ω) = K(ω ,τ)ρ(ω) the standard relation with the euclidean correlator holds. How-
ever, the modified kernel is finite whenω → 0: K(0,τ) = 1. A SVD ofK yields new basis functions
ui(ω). The first four are shown in Fig. 5 (right). Clearly they take a finite value whenω → 0, and
the ω = 0 point can be included in the analysis. The redefined spectral function isexpanded as
ρ(ω) = m(ω)exp∑N

i=1 ciui(ω) and the same MEM routine can be used to find the coefficientsci.
MEM now reconstructsρ ∼ ρ/ω rather thanρ. This reshuffling of powers ofω is nontrivial, since
ρ andρ are not expanded in a complete set: the reduction step restrictsρ to a different subspace
with manifestly different properties, in particular in the smallω limit.

A second (minor) modification is needed to accessρ(ω)/ω at zeroω , relevant for transport
coefficients. For spectral functions of fermion bilinears, such asjµ = ψ̄γµψ , the traditional default
model ism(ω) ∼ m(ω)/ω ∼ ω , determined by the high-energy behaviourρ(ω) ∼ ω2. Unfortu-
nately, this introduces a bias and puts the intercept equal to zero from the start. To avoid this, one
may usem(ω) ∼ (b + ω), whereb > 0 is a parameter that can be used to assess default model
dependence at smallω .

We have applied the modified algorithm to the problem of the electrical conductivity (or charge
diffusion) in quenched QCD with light staggered fermions and performed simulations on a fine lat-
tice atβ = 7.192 of size 643×Nτ above the deconfinement transition. The quarks are so light that
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chiral symmetry restoration is clearly visible when comparing pseudoscalar and scalar correlators
[49]. In Fig. 6, the spectral function normalized byωT is shown for not too largeω at two tempera-
tures above the deconfinement transition:T/Tc ∼ 1.5 (Nτ = 24) andT/Tc ∼ 2.25 (Nτ = 16). In both
cases results for three values of the default model parameterb are shown. The slight spread of the
curves gives an indication of the uncertainty in the MEM reconstruction. There is no dependence
on the discretization along theω axis, as can be seen from the results atNτ = 24 usingNω = 1000
and 2000 at fixedωmax. From the intercept the conductivity is found to beσ/T = 0.4±0.1 with
no significant temperature dependence. This result is normalized to a singleflavour and should be
multiplied with the sum of the electric charge squared for light flavours. The error is systematic and
due to the MEM uncertainty. The statistical error is expected to be smaller. Thisresult is indicative
of strong interactions: at weak coupling the conductivity behaves asσ/T ∼ 1/(g4 ln1/g) → ∞,
whereas at strong coupling the scale is set solely by the temperature.

A similar conclusion has been drawn by Meyer in the case of the shear viscosity. In Ref. [46]
an upper boundη/s . 1 is obtained in SU(3) gauge theory on lattices atT/Tc = 1.24 (β = 6.2,
203×8) and 1.65 (β = 6.408, 283×8).

5. Quarkonium at high temperature

Another signal of strong interactions in the quark-gluon plasma is the survival of charmonium
and other heavy quark mesons aboveTc. This has been studied on the lattice a few years ago using
the Maximal Entropy Method [50, 51, 52]. A more recent extensive studyof charmonium and
bottonium spectral functions can be found in Ref. [53]. This topic has been discussed last year in
Hatsuda’s plenary talk [54], so I briefly mention developments that took place recently and were
discussed at this Conference.

Up to last year, all studies were performed in quenched QCD. The TrinLat collaboration has
carried out dynamical simulations with two flavours on highly anisotropic lattices, which can be
used to study charmonium at zero and nonzero temperature [55]. A spectral function analysis above
Tc, using the modified version of MEM described in the previous section, can be found in Ref. [56].
The results suggest that the S-waves (J/ψ andηc) survive up to temperatures close to 2Tc, while
the P-waves (χc0 andχc1) melt away below 1.2Tc. However, there are systematic uncertainties that
need to be improved in order to make these conclusions more firm, in particular simulations at a
finer lattice spacing would be desirable. One reason this is necessary is to better understand the
appearance of artefacts at larger energy introduced by the finite lattice spacing, which have been
discussed for a variety of lattice fermion formulations (Wilson, staggered, domain wall, overlap) in
the free field limit [57, 37, 58].

The presence of the transport contribution at smallω can interfere with spectral features at
largerω when not properly disentangled, as emphasized by Umeda [59]. This canbe partially
avoided by subtracting the midpoint value atτ = 1/2T from the correlator, which has the effect of
suppressing the contribution at smallω . A spectral analysis can then be done onG(τ)−G(1/2T ).

Petreczky and Mócsy have provided a closer look at potential models, traditionally used to
study quarkonium at zero temperature. Doubts whether potential models can describe quarkonium
correlators at finite temperature have been expressed in Ref. [60]. A lower melting temperature than
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usually obtained with MEM is found when a potential model based on lattice QCD simulations is
used, both in the quenched approximation [61] as well as in the theory with 2+1 flavours [62].

In order to avoid conceptual problems with the extension of zero-temperature potential mod-
els to nonzero temperature, a real-time static potential, firmly based in thermal fieldtheory, was
introduced in Ref. [63]. When applied to quarkonium [64], the results seem to support the standard
interpretation of results obtained with MEM.

6. Summary

Results from relativistic heavy ion collisions at RHIC have highlighted the importance of
understanding transport and hydrodynamical behaviour in QCD abovethe deconfined transition.
Nonperturbative first-principle calculations of spectral functions, especially at small energiesω .

T , are badly needed. Since this involves inherently real-time physics, it is a difficult problem for
lattice QCD, but recently several steps forward have been made. Using multi-level algorithms,
accurately determined euclidean correlators of the energy-momentum tensor are now available.
Concerning the analytical continuation to real time, an instability at small energies in the standard
Maximum Entropy Method, preventing access to hydrodynamical featuresof spectral functions,
has been found and resolved. The first results support the idea that the quark-gluon plasma is
strongly interacting in the temperature range 1. T/Tc . 2.5. Extension of the work described
here will hopefully yield a better understanding of the hydrodynamical regime of thermal QCD
from first principles.
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