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1. Introduction

I review the status of light hadron spectroscopy from lattice QCD. I start by reviewing lattice
calculations of the masses of flavour singlet pseudoscalar mesons. In the first part I will focus on
lattice results for the JPC = 0++ scalar mesons, because these mesons are candidates for having
glueball or tetraquark degrees of freedom and are still not well understood. In the second half of
the talk I will compare the results for basic quantities such as the pion decay constant and mass of
the light vector meson between different lattice formalisms. This is an important part of validating
lattice calculations.

There are various omissions in this review. I don’t include any results for baryons. Of partic-
ular note is the work of the LHPC collaboration [1] who are using a highly developed variational
technique to try to fully map out the low lying baryon spectrum. Also I don’t discuss any devel-
opments in the spectroscopy of mesons that include heavy quarks, although there have been many
new states that have been discovered such as the Ds(2317), X(3872), and Y (4260). See [2] for a
review of the experiments and the results from model calculations, and [3] for a review of lattice
results.

2. The singlet pseudoscalar mesons from lattice qcd

The large mass of the η ′ meson is thought to be caused by the QCD vacuum structure and the
axial anomaly. The η and η ′ mesons are decay products of flavour non-singlet 0++ mesons, so are
a natural starting point for a review with a focus on 0++ mesons.

In unquenched QCD with n f =2 sea quarks there is only one singlet pseudoscalar meson that
I will use the η2 notation for. The mass of the η2 is expected to be around 800 MeV. The lattice
calculations of the flavour singlet pseudoscalar mesons involve the computation of disconnected
diagrams, that are more noisy and compute intensive, than connected correlators. With the avail-
able computing power it is possible to compute the relevant disconnected correlators. However,
the intrinsic noisiness of the correlators means that many more configurations are required than for
a standard lattice QCD calculation of flavour non-singlet quantities, and this makes them expen-
sive [4, 5]. In fact the sub-groups who work on flavour singlet quantities inside a collaboration are
always the people who ask for much longer simulation runs.

In figure 1 I show a plot of recent results from the ETM collaboration for the mass of the η2
meson [4]. There is an summary of the results of older lattice QCD calculations for the mass of the
η2 meson in [7].

Figure 1 shows that the mass of η2 meson is consistent with a constant behaviour with quark
mass, although the statistical errors are large. The preliminary estimate for the mass of the η2, from
ETMC [4], is ≈ .88 GeV (r0m(η2) = 2).

Another complication of 2+1 lattice QCD calculations is η-η ′ mixing. In lattice QCD calcu-
lations with 2+1 flavours of sea quarks there will be mixing between light and strange interpolating
operators. The experience with the last generation of n f =2 lattice QCD calculations with pion
mass at the 600 MeV level found that the differences between quenched and unquenched QCD
were mostly small [8]. This suggests that the difference between n f =2 and n f =2+1 will be small.
However this will not be the case for the flavour singlet pseudoscalar mesons where the ground
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CP-PACS r0 = 4.49
UKQCD r0 = 5.04
ETMC r0 = 5.22 L = 24
ETMC r0 = 5.22 L = 32
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Figure 1: Summary of results for the mass of η2 from calculations with light pions and a < 0.1 fm. The
results are from ETMC [4], CP-PACS [6], and UKQCD [7].

state will be the mass of the η (mass 548 MeV) with n f = 2+1 flavours, but the mass of the η2
(mass around 800 MeV) for lattice calculations with n f = 2 flavours. This will indirectly effect
particles that decay via the strong interaction with a flavour singlet pseudoscalar meson as a final
state, because the decay threshold will differ between n f = 2 and n f = 2 + 1, by the order of 250
MeV.

Both the uγ5u + dγ5d and sγ5s will couple to the η meson. The η ′ is the first excited state in
light flavour singlet pseudoscalar channels. A modern approach to η , η ′ mixing is reviewed by
Feldmann [9].

The CP-PACS/JLQCD collaboration used a variational technique to study the η and η ′ me-
son [10]. The basis states in equation 2.1 were used to form a variational smearing matrix 2.2.

ηn = (ūγ5u+ d̄γ5d)/
√

2, ηs = (s̄γ5s), (2.1)

G(t) =

(

ηP
n (t)ηS

n (0) ηP
n (t)ηS

s (0)

ηP
s (t)ηS

n (0) ηP
s (t)ηS

s (0)

)

, (2.2)

The preliminary results presented at lattice 2006 [10]. from a lattice calculation with a ∼ 0.12
fm, mV /mPS 0.61 to 0.78 were mη = 0.55(2) GeV, and mη ′ = 0.87(5) GeV (compare to with ex-
periment, mη = 0.548 GeV, and mη ′ = 0.958 GeV There has also been a recent attempt to compute
the masses of the η , η ′ mesons using improved staggered fermions [5], that is also regarded as an
important theoretical test of the staggered formalism [11].

3. The light scalar mesons from lattice QCD

The interpretation of many 0++ mesons in terms of quarks and glue degrees of freedom is
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Meson I M MeV Γ MeV main decay comment
a0(980) 1 985 50 - 100 ηπ tetraquark, molecule, qq
a0(1450) 1 1474 265 ηπ qq

κ 1/2 660 560 Kπ not in PDG (yet)
K0(1430) 1/2 1414 290 Kπ qs

Table 1: Light 0++ and 0+ flavour non-singlet mesons

Group n f mK0 GeV
Prelovsek et al. [16] 2 1.6±0.2

McNeile and Michael [17] 2 1.1−1.2
Mathur et al. [18] 0 1.41±0.12

SCALAR [14] 0 ∼ 1.7

Table 2: Lightest strange-light 0+ meson from lattice QCD.

still not clear. The 0++ mesons potentially contain glueball, tetraquark, meson molecule or even
quark-antiquark degrees of freedom.

There are a number of reasons that lattice calculations of the light scalar mesons are challeng-
ing. The lattice QCD correlators for scalar mesons are more noisy than for ρ and π mesons. The
light scalar mesons decay via S-wave decays, so the state decays when its mass equals the sum of
the masses of the decay products. This makes it easier to see the effect of the strong decay in lattice
calculations, than for states that decay via P-wave, such as ρ , ∆, or Roper resonance.

3.1 The flavour non-singlet 0++ and 0+ mesons.

In table 1 I collect some pertinent experimental properties of the light flavour non-singlet scalar
mesons. For more detailed information see the reviews [12, 13]. The existence of the κ meson is
controversial (see [14] for a discussion), I use the masses and widths from [15].

Although I am going to loop through the lattice results for the different mesons in table 1 one
by one, it is also important to classify the states into SU3 multiplets or a classification based on
tetraquarks. The key questions we want to answer from lattice QCD are: do we see a0(980) with
qq operators (where q is a generic light quark) and do we see the κ meson at all?

In table 2 I collect results for the mass of the lightest 0+ qs meson from lattice QCD calcu-
lations. The lattice results in table 2 are consistent with experimental mass of the K?

0 (1430), but
mostly miss the controversial κ particle. All the lattice calculations used sq interpolating oper-
ators, so may have missed the κ state, if it is mostly a tetraquark state, with no overlap with sq
interpolating operators.

I now discuss the mass of the lightest flavour non-singlet 0++ meson from quenched and
unquenched QCD. In quenched QCD there is a ghost contribution [19], due to the ηπ contribution,
to the scalar correlator that needs to be subtracted off the lattice data. This contribution is included
via chiral perturbation theory [19]. I collect together some recent results for the mass of the light
0++ meson from lattice QCD in table 3. I only include quenched data where the ηπ contribution
has been corrected, hence there is no data before the paper by Bardeen at al. [19] in 2001.
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Group n f ma0 GeV
Bardeen at al. [19] 0 1.34(9)

Burch et al. [20] 0 ∼ 1.45
Hart et al. [21] 2P 1.0(2)

Prelovsek et al. [16] 2 1.58(34)

Prelovsek et al. [16] 2P 1.51(19)

Mathur et al. [18] 0 1.42(13)

Table 3: A collection of results from lattice QCD for the mass of the lightest non-singlet 0++ meson. The P
stands for partially quenched.

Figure 2: Difference in mass between masses of light b1 and a0.

McNeile and Michael [17], in an unquenched lattice QCD calculation focused on the mass
difference (in the hope that systematics cancel), between the 1+− and the 0++ mesons. The lat-
tice calculation used gauge configurations from UKQCD’s non-perturbatively improved clover ac-
tion [8], and configurations from CP-PACS’s tadpole improved clover program [22]. The results
for the mass difference are plotted in figure 2. Figure 2 shows that the mass of the 1+− was higher
than the 0++. The final result was mb1 −ma0 = 221(40) MeV, compared to the experimental result
of 245 MeV. At this conference Lang et al. reported masses for the lightest flavour non-singlet 0++

consistent with the mass of the a0(980) meson, from an unquenched lattice QCD calculation using
chirally improved fermions [23].
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The previous lattice QCD calculations were in a regime where the quark masses were large
enough that the decay a0 → ηπ was forbidden. Now I discuss the new lattice QCD calculations
where the decay a0 → ηπ is energetically allowed.

The MILC collaboration [24] originally claimed that they had evidence for a0 decay to πη
from their 2+1 calculations with improved staggered fermions. Other decays are discussed in [25].
Later work by the MILC [25] and UKQCD [26] collaborations showed that the lightest state in the
flavour non-singlet 0++ channel was actually below the πη threshold, with improved staggered
fermions. This was puzzling, because experimentally the a0 → ππ decay is forbidden by G parity.

In [27], Prelovsek explained the behaviour of the flavour non-singlet 0++ correlator with im-
proved staggered fermions using staggered chiral perturbation theory. Bernard, DeTar, Fu, and
Prelovsek [28] extended the original analysis by Prelovsek, and also applied it to the flavour singlet
f0 meson. This is a successful theoretical test of the rooting of the staggered determinant, but a
larger study, with more sea quark masses, is required to say something specific about the mass of
the a0 meson.

The ETM collaboration have preliminary results for the mass of the light 0++ meson from a
n f =2 unquenched lattice QCD calculation with twisted mass fermions. In figure 3 I plot the mass
of the light 0++ meson and the π +η2 decay threshold as a function of the square of the pion mass.
The mass of the η2 was computed by Michael and Urbach [4]. Figure 3 shows some evidence for
the mass of the 0++ tracking the π + η2 threshold, or at least for it being an open decay channel.
The mass of 0++ state is relatively independent of mass and consistent with the mass of a0(1450)

meson. As noted by Mathur et al. [18], the mass independence of 0++ is consistent with closeness
of the experimental masses of the a0(1450) and K0(1430), if they are both part of the same SU3
octet.

Although the preliminary results from the ETM collaboration are inconsistent with the results
by Michael and McNeile [17], some caution is required. We are only just starting to deal with
mesons with open decay channels in unquenched lattice QCD calculations. As discussed in sec-
tion 2, there is a big difference between the lightest flavour singlet pseudoscalar meson in lattice
QCD calculations with n f = 2 and n f = 2+1 sea quark flavours.

To learn how to deal with mesons with open decays on the lattice we need some simple test
cases to validate the lattice methods. The b1(1235) meson is good example, because most people
think that it is qq state and its width is not too large at 142 MeV [29]. A bad example to study is
the a1(1260) with an experimental width of 250 to 600 MeV [29]. The b1 meson has the dominant
decay ωπ , but I will plot the ρπ decay threshold because the difference between the ρ and ω
correlators are disconnected and are thought to be small.

In figure 4 I plot some preliminary results from the ETM collaboration for the mass of the b1
meson with the estimate of the ωπ threshold, as a function of the square of the pion mass. The
mass of the lightest state in the b1 channel does seem to track the decay threshold quite well. I also
include results from the MILC collaboration [24].

3.2 Determining the structure of a meson
Some questions such "is this state a molecule?" can be reformulated as: "what is the structure

of this hadron?". Most lattice QCD calculations just introduce a particular class of interpolating
operator, such as qq or qqqq and then check to see what the lowest masses are. It would be useful
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Figure 3: Mass of lightest state in 0++ channel with πη2 decay threshold.
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Figure 4: Mass of b1 state as a function of square of pion mass

if lattice QCD calculations also tried to look at the structure of mesons. This is after all how
continuum phenomenology is done or attempted.

In the past there have been attempts to measure wave functions of hadrons of the form ψ(x +

r)ψ(x). This can be done by fixing the gauge, or inserting gauge links between the quark and
antiquark fields. Because the ψ(x + r)ψ(x) operator is restricted to one particular Fock space
component these objects are not directly accessible to experiment via a form factor measurement,
but are still a valuable theoretical tool. The CLQCD collaboration [30] have recently argued that
because they found a node in the lattice wave-function of the first excited 1++ state (a candidate
for the X(3872)) in charmonium, then the state was a conventional cc meson.

The one test that is commonly used in lattice QCD calculations, that include tetraquark degrees
of freedom, is to study the volume dependence of the amplitudes. A strong volume dependence
indicates that the state is a scattering state and no resonance is formed [31].
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Group Method fa0 MeV
Maltman [38] sum rule 298

Shakin and Wang [39] model 433
Narison [34] sum rule 320−390

Table 4: Some results from models for fa0 decay constant.

There are also observables that are sensitive to the structure of the hadron that are also in
principle accessible to experiment. For example, leptonic decay constants, strong decay widths,
and two photon decay widths.

Pennington [32] has recently extracted the two photon decay width of the σ from experiment
to be Γ(σ → γγ) ∼ 4 keV. Pennington notes that value of Γ(σ → γγ) can depend quite sensitively
on the quark content of the σ [32]. Thanks to Dudek and Edwards [33] we now have a formalism
to compute two photon widths on the lattice. Dudek and Edwards [33] compute Γ(χ0 → γγ) =
2.4±1.0 keV, from a quenched QCD calculation. It would be interesting to do a similar calculation
for light scalars.

Narison [34] proposed to use the leptonic decay constant of the non-singlet 0++ mesons to
determine the structure of the a0 meson. The fa0 decay constant of the light flavour non-singlet
0++ meson has been computed using unquenched lattice QCD [17].

〈0 | qq|a0〉 = Ma0 fa0 (3.1)

See [17] for a further discussion of this decay constant and the connection with the electroweak
current. The decay constant fa0 depends on the renormalisation scale, however here I just do a
qualitative comparison. The experimental measurement of the decay constant in equation 3.1 via τ
decay is discussed by Diehl and Hiller [35].

A molecule of two mesons should have a very small "wave-function" at the origin, hence fa0

should be small. The definition of fa0 is similar to that of the pion decay constant. Hence we
mean "small" relative to 130 MeV. The other measured decay constants of pseudoscalar mesons
are within a factor of 2.5 to the pion decay constant [29]. The only exception is the decay constant
of the π(1300) that is suppressed [36, 37]. A large value for decay constant fa0 does not rule out a
qqqq multi-quark meson.

Using gauge configurations from UKQCD and CP-PACS, McNeile and Michael computed
fa0 ∼ 480 MeV. In table 4 I collect some results for the value of fa0 from model calculations and
sum rules (see also [40]). A lattice QCD calculation of the decay constant of the scalar heavy-light
mesons was reported in [41].

Computing the decay width of a hadron is also very a valuable way of identifying a state on the
lattice. In [17], it was reported that the experimental hadron coupling for the decays a0(980)→ KK
and a0(1450)→ KK were 0.9 and 0.5 respectively. A lattice calculation [17] found that the lightest
hadron in the 0++ correlator had a coupling to KK of ≈ 1, thus providing additional evidence that
the lightest state was the a0(980).

3.3 Flavour singlet 0++ mesons

In pure SU3 gauge theory, Morningstar and Peardon [42] found 13 glueballs with masses

8
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Meson M MeV Γ MeV decay comment
f0(600) (σ ) 441 544 ππ tetraquark, molecule, qq

f0(980) 980 40 - 100 ππ tetraquark, molecule, qq
f0(1370) 1200-1500 200-500 ππ qq, glueball
f0(1500) 1505 109 ππ qq, glueball
f0(1710) 1724 137 KK qq, glueball

Table 5: Light flavour singlet 0++ mesons from the PDG. The dominant strong interaction decay is reported.

under 4 GeV. This raises the question as to whether there is any evidence for glueballs in nature,
or are glueballs just theoretical constructs that are only of interest to test ADS/CFT techniques for
example. One way we can answer this question on the lattice is to study the effect of sea quark
dynamics on the glueball masses. I will focus on the 0++ state, as this is where the most work has
been done in unquenched lattice QCD, and where there are possible experimental candidates. Hart
and Teper [43] only found a signal for the 0++ and 2++ states from unquenched calculations.

I summarise some pertinent experiment results for the flavour singlet 0++ mesons in table 5.
The f0(600) (σ ) is particularly interesting. It was proposed in 1955, but only entered the PDG
summary tables in 2002 [18]. The parameters for the f0(600) comes from the work of Caprini et
al. [44], while the PDG summary quotes a mass in the range 400 to 1200 MeV [29].

Morningstar and Peardon [42] obtained M0++ = 1730(50)(80) MeV for the mass of the lightest
0++ glueball from quenched QCD. Chen et al. [45] recently found M0++ = 1710(50)(80) MeV.
The quark model predicts that there should only be two 0++ mesons between 1300 and 1800 MeV,
so if the mixing between the glueball and qq operators is weak, then the 0++ glueball is hidden
inside the f0(1370), f0(1500) and f0(1710) mesons.

The old work by Weingarten and Lee [46] on glueball-qq mixing introduced a mixing matrix
between the glue and qq states. The matrix elements were estimated in quenched QCD. Weingarten
and Lee [46] predicted that the f0(1710) meson was 74(10)% 0++ glueball, and hence the mixing
between the 0++ glueball and qq states was weak. Weingarten and Lee’s [46] calculations were
critiqued in [47]. Also their results were probably effected by the quenched artifact in the non-
singlet 0++ correlator [19]. As discussed in section 2, now that η , η ′ mixing is now being studied
in 2 + 1 lattice QCD calculations, then the mixing between light and strange flavour singlet scalar
operators can in principle also be included.

There are claims that the continuum phenomenology is more consistent with the strong mixing
between 0++ glueball and qq states. In this case there could be a sizable contributions from glueball
interpolating operators to the f0(600) or f0(980) mesons.

The SESAM collaboration studied the glueball spectrum on unquenched lattices [48]. Mc-
Neile and Michael studied the light 0++ spectrum with unquenched QCD [47] at a coarse lattice
spacing and found the mass of the lightest flavour singlet 0++ meson was very light. Using 0++

glueball operators, Hart and Teper [43] found that

M0++UNquenched = 0.85(3)M0++Quenched (3.2)

at a fixed lattice spacing of 0.1 fm.

9
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Figure 5: Summary of unquenched results for lightest flavour singlet 0++ mesons from [50]. The un-
quenched results are from SESAM [48], UKQCD-I [47], and UKQCD-II [50].

Unfortunately, the existing unquenched lattice QCD calculations of the flavour singlet 0++

mesons don’t have the range of lattice spacings where a continuum extrapolation can be attempted.
In quenched QCD it was found that the lattice spacing dependence of the mass of the 0++ glueball
was strong. The use of a Symanzik improved gauge action by Chen et al. [45] and, Morningstar
and Peardon [42], produced a slightly smaller slope with lattice spacing of the scalar 0++ glueball
mass, than for calculations that used the Wilson plaquette action. This is relevant to unquenched
calculations, because any suppression of the mass of the flavour singlet 0++ mass may be due to
lattice spacing effects.

The SCALAR collaboration [49], used unquenched lattice QCD, with Wilson fermions and
the Wilson gauge action, to study the 0++ mesons. At a single lattice spacing a ∼ 0.2 fm, with qq
interpolating operators only, they obtain mqq ∼ mρ . At the very least this result needs to be checked
with a continuum extrapolation.

In unquenched QCD, both glue and qq states will couple to singlet 0++ mesons, so it is better
to do a variational fit with both types of operators as basis interpolating operators. The variational
technique analysis of the singlet 0++ mesons was done by Hart et al. [50]. A combined fit to
0++ glue and qq interpolating operators with two types of spatial smearing sources was done. The
calculation used non-perturbative improved clover action at a single lattice spacing [8]. Configura-
tions from CP-PACS [22] with the Iwasaki gauge action and tadpole improved clover action were
also used in the analysis. A summary plot of the results is in figure 5. The data with the bursts and
squares (with the pion masses written near them) in figure 5 shows an additional reduction of the
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mass of the 0++ state over the pure glueball operators, as used by Hart and Teper [43]. The data
with the Iwasaki action should be less affected by lattice artifacts [22].

Mathur at al. [18] recently claimed to get a result for the f0(600) (σ ) from quenched lattice
QCD with pion masses as low as 180 MeV. Using the interpolating operator ψγ5ψψγ5ψ they
obtain m f0(600) ∼ 550 MeV. This interpolating operator has a disconnected contribution that they
computed and found to be small. The key part of this work is a three state fit (π(p = 0)π(p = 0)

, f0(600), π(p = 2π
L )π(p = −2π

L ) using the Bayes adaptive curve fitting algorithm [51]. They
studied the finite volume effects to distinguish the signal for the resonance from the ππ scattering
states [31].

I have a number of concerns about their result. For example, can quenched QCD really be used
to calculate the mass of a meson with a mass of 440 MeV and width of 544 MeV [44]? Mathur et
al. [31] computed the mass of the K?(1430), with a width of 290 MeV to be 1.41±0.12.

Another concern is the use of the Bayes adaptive fitting [51] algorithm. This is a clever way of
doing a multi-exponential fit to a single correlator. The Bayes adaptive fitting method was used by
the Kentucky group to study the Roper resonance [52] in quenched QCD. Other groups have not
confirmed this (see Lasscock et al., [53] for a review), partly because the Kentucky group worked
with much lighter pions than other groups

Sugamuma et al. [54] used quenched QCD to study light 0++ states with qqqq interpolating
operators. Hybrid boundary conditions and the Maximum Entropy Method were used to study
correlators. No localized resonance of the form qqqq was found in the quark mass region of
ms < mq < 2ms.

4. Brief overview of status of unquenched QCD

There have been individual plenary reviews for some of the recent large scale lattice QCD
calculations [55, 56]. In this section I compare some results from different lattice QCD calculations.
I used r0 = 0.469 fm from HPQCD and MILC collaborations [25, 57] to consistently determine the
lattice spacing. I will discuss this more in section 5. This will make the comparison of some
group’s results against experiment slightly worse, but it is necessary to use a common value of r0
to compare the results of different groups. I mostly use recently published data, rather than use the
very latest results presented at this conference.

I compare results at fixed lattice spacing. The results from different actions only need to agree
in the continuum limit. In the past there was a controversy that the quenched Edinburgh plots for the
Wilson and staggered actions did not agree in the continuum limit [58]. This was largely resolved
by better extrapolations to the continuum limit [59, 60]. All the recent large scale calculations use
improved lattice formulations, so the corrections to the continuum limit should be small (but still
need to be quantified of course).

4.1 The pion decay constant

In figure 6 I plot the pion decay constant in physical units as a function of the square of the pion
mass in physical units. I have applied the finite size corrections from Colangelo et al. [61]. The
investigation of finite size effects is an active area of study at the moment (see for example [55]).
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Figure 6: The pion decay constant as a function of the square of the pion mass. There is data from
MILC [62], NPLQCD [63], HPQCD [64], CERN [65, 66] and QCDSF [67]

All the data in figure 6 either use definitions of fπ with an automatic matching factor of 1, or a
renormalisation factor that is obtained via a nonperturbative method.

I find it very encouraging that the results, in figure 6, from MILC [62] (the new results from
the superfine run), NPLQCD [63], HPQCD [64] and ETM collaborations [68] cluster very closely
together.

The data from the CERN [65, 66] and QCDSF [67] groups slightly disagree with other groups
at the ∼ 4 MeV level. There could be several reasons for this. This could be a difference due
to O(a2) terms, or the way ZA is treated. It would be interesting to do a similar comparison for
heavy-light decay constants [69].

The CERN group [65, 66] presented their results as a ratio of the decay constant to a refer-
ence pion mass. This analysis method was used by the ALPHA collaboration [70, 71] to look for
chiral logs, or quenched artifacts, in the pion mass and decay constant. As previously noted by
Jansen [59], the ratio method hides a lot of systematic errors. In figure 7, I use the ratio method to
compare the data from the CERN group [65, 66] with that from the ETM collaboration [68]. The
agreement is much better in the ratio plot, than comparing just the decay constant.

Now that the quality of unquenched lattice QCD calculations is improving, we may need to
purge the subject of analysis techniques that were developed when the data was poor. For example,
the Edinburgh (or APE) plots of the ratio of the nucleon mass to vector meson mass as a function
of the ratio of the pion mass to vector meson mass, mix up the problems of the sensitive chiral
extrapolation of the nucleon mass with the difficult problem of the effect of decay of the ρ meson.
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Figure 7: Ratio of decay constants. Comparing the results from ETM collaboration [68] and the CERN
group [66].

Usually both the vector and nucleon masses have fairly large errors, but there is no cancellation
when the ratio is taken, so the Edinburgh plot tends to amplify the errors.

4.2 The ρ meson

In figure 8 I plot the mass of the light vector meson as a function of the square of the pion
mass, from lattice QCD calculations that use improved staggered, domain wall, and twisted mass
fermions. The data in figure 8 are remarkably consistent, although the statistical errors need to be
reduced on some results.

In the real world the ρ decays into two pions, via a P-wave decay. The threshold for decay
is 2
√

m2
π +( 2π

L )2 where L is the side of the box. The CERN group [65, 66] found excited masses

for the ρ channel that were consistent with 2
√

m2
π +( 2π

L )2. It is more kinematically favourable to
study the decay of the ρ meson with one unit of momentum to decay to a pion at rest and a pion
with one unit of momentum [73, 74].

Michael and Urbach for the ETM collaboration [4], estimated the mixing element between ρ
and ππ from a three point function. This mixing produced a 5% shift in the mass of the lightest ρ
using the method in [73]. This suggests that the mass of the ρ meson in figure 8 from the ETMC
collaboration is largely unaffected by the two π decay.

The ρ decay will effect the chiral extrapolation model used to extrapolate the mass of the rho
meson. The Adelaide group have studied different regulators [75, 76] for the effective field theory
of ρ decay. This produced additional mass dependence for very light pion masses. These type
of chiral extrapolation models for the ρ meson were not widely used to analyse lattice data. One
reason for this was that the fit models showed behaviour outside simple linear or quadratic mass
dependence in regimes where there were no lattice data. Now that many groups have unquenched
data with pion masses in the 300 to 400 MeV regime, now is the time to revisit at this issue. Bruns
and Meißner [77] have published a new chiral extrapolation formulae for the mass of the ρ meson.
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Figure 8: The mass of the light vector meson as a function of the square of the pion mass. I include prelim-
inary data from ETMC [68], and published data from RBC-UKQCD [72] and the MILC collaboration [24]
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Figure 9: Quark mass dependence of the mass of the ρ [77].

The derivation used a modified MS regulator and a power counting scheme.

Mρ = M0
ρ + c1M2

π + c2M3
π + c3M4

π ln(
M2

π
M2

ρ
) (4.1)

The term with the c3 coefficient is due to the self energy (in the infinite volume limit). Bruns
and Meißner [77] recommend that the size of the ci coefficients obtained from the fits be checked
against other estimates (eg. from ωρπ coupling). Figure 9 from the paper by Bruns and Meißner [77]
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shows the effect of the extrapolation model in equation 4.1 on older CP-PACS data. See [78] for
an another analysis of the ρ decay on the mass of ρ meson.

5. Determining the lattice spacing

To convert the results from unquenched lattice calculations from lattice units into physical
units, requires that the lattice spacing is determined. In principle this requires that a single physical
number be sacrificed to determine the lattice spacing. There are problems with many of the obvious
choices of quantities to use. For example the mass of the nucleon is very sensitive to the chiral
extrapolations of the mass to physical quark masses. Now that most groups are using some kind of
non-perturbative renormalisation in the calculation of the fπ this is in principle a good quantity to
use to determine the lattice spacing. Unfortunately, the determination of fπ also requires a careful
chiral extrapolation. Also as Marciano [79] pointed out the ratio fK

fπ
can be used to extract the CKM

matrix element Vus.
Quantities that are not good choices to determine the lattice spacing are hadrons that decay via

the strong interaction [80]. Given the discussion about quark mass dependence of the mass of the
light vector meson in section 4.2, it is clear that using the ρ mass or K? mass to set the scale is not
a good idea, because we don’t have full theoretical control of the chiral extrapolation. The problem
of using the ρ mass to set the scale has been known for a long time, for example it was discussed
by DeGrand at the lattice 90 conference [81], although it is still being used [72].

However, I don’t think we should give up studying the properties ρ or K? mesons using lattice
QCD. Obtaining an accurate value of the ρ mass from lattice QCD is prerequisite to calculations
of hadrons such as the Roper resonance or scalar mesons. There are also a number of important
semi-leptonic weak decays, such as B → ρ + γ , B → K? + γ that involve a ρ meson in the final
state.

One popular way to determine the lattice spacing is to use a quantity called r0 [82], determined
from the heavy quark potential, via

F(r0)r2
0 = 1.65 (5.1)

where F is the force of the heavy quark potential. The value of r0 in lattice units can be obtained
very accurately from lattice calculations. When Sommer [82] introduced r0 as he assigned r0 =
0.49 fm, from continuum heavy quark potentials, with an estimated uncertainty of 10%. The value
of r0 has largely replaced the use of the string tension to determine the lattice spacing.

The MILC/HPQCD collaborations have determined r0 = 0.469(7) fm from the 2S-1S mass
splitting in ϒ from unquenched lattice QCD calculations with 2+1 flavours of improved staggered
quarks [57]. A consistent lattice spacing is determined from other quantities, such as other splittings
in the ϒ system, fπ , and mass splittings in charmonium [80]. This value of r0 is crucial to the
phenomenology produced by the improved staggered program. For example, if I naively change
from using r0 = 0.469 fm to r0 = 0.49 fm, with HPQCD’s recent result for fDs = 241(3) MeV, then
their "new" number is 231(3) MeV [64]. This is a shift of 3 σ . As the HPQCD collaboration push
to ever higher precision the current error on r0 needs to be reduced [64].

Other collaborations, for example RBC-UKQCD [72], use r0 = 0.49 fm to set the lattice spac-
ing, based on consistency with ρ mass and the K?/K mass ratio. As reviewed by Boyle [56], the
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Group n f Method r0 fm
Sommer [82] - quark model 0.49+0

−5
Morningstar and Peardon [83] 0 quenched summary 0.48(2)

UKQCD [8] 2 K/K* 0.55
JLQCD [84] 2 mρ 0.497 (-9)(13)
JLQCD [84] 0 mρ 0.5702(75)(50)
QCDSF [85] 2 summary nucleon masses 0.47(3)
QCDSF [78] 2 fπ

gA
0.45(1)

ETMC [68] 2 fπ 0.454(7)
HPQCD/MILC/FNAL [80, 57] 2+1 Upsilon & ratio plot 0.469(7)

Table 6: Summary of lattice determinations of r0.

RBC-UKQCD collaboration are now obtaining lower values of r0 than 0.49 fm, when they set the
lattice spacing using hadrons that are stable under the strong interactions, such as the Ω.

The value of r0 can be determined from lattice calculations. In table 6 I collect some estimates
of the value of r0 from lattice QCD calculations. From the summary of the results in table 6 we see
that the recent unquenched calculations are starting to report values of r0 between 0.44 to 0.48 fm.

I am being slightly hypocritical here, because for clover action with mq > ms/2 we used to
argue that by using r0 ∼ 0.49 fm some systematics might cancel [41].

One problem with using r0 to set the scale is that r0 needs a chiral extrapolation to this massless
limit. See Sommer et al. [86], Aoki [58] and Bhattacharya et al. [87] for discussions about the mass
dependence of r0. Some part of the mass dependence of r0 may be physical, and some part may be
a lattice artifact. In figure 10 I plot r0, with the intercept fixed at 0.467 fm, for a number of different
lattice formalisms, against the square of the pion mass in physical units.

The clover action is only an onshell improved action. In the ALPHA formalism for the im-
provement of the clover action, the leading lattice artifact part of the linear mass dependence of r0
is related to the bg improvement coefficient.

ĝ2
0 = (1+bgamq)g2

0 (5.2)

Fully O(a) improved actions, such as domain wall or twisted mass fermions should have no
O(a mq) lattice artifacts, and reduced dependence on the quark mass on r0. I note that RBC-
UKQCD [88, 72] linearly extrapolate r0 with quark mass, but the ETM collaboration [68] extrapo-
late r0 quadratically in quark mass to the chiral limit.

My naive understanding of the phrase "decoupling of continuum and chiral limits" about
fermion operators that are approximate solutions to the Ginsparg-Wilson relation suggested that
mass dependence of r0 for overlap/DWF actions should be small. The data in figure 10 doesn’t
appear to show reduced mass dependence for the domain wall data. The domain wall data is at a
coarser lattice spacing than for the other actions, so I may be making an unfair comparison.

The MILC collaboration [24] have chosen to work at fixed lattice spacing rather than fixed β ,
so I have not included their results in figure 10. As the quark mass is changed, β is changed to
keep r0/a constant. This was also the strategy of the improved clover calculations performed by
the UKQCD collaboration [8, 90].
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Figure 10: The value of r0 as a function of the square of the pion mass, using data from RBC-UKQCD [72],
QCDSF-UKQCD [89], and ETMC [68]

In this section I am not advocating that r0 should always be used to set the lattice spacing in
every calculation. However, I do hope that eventually there will be consensus between different
lattice QCD calculations on a final value for r0 in physical units. It is certainly a crucial cross-check
on the results from the improved staggered program.

6. Conclusions

There is still no consensus as to whether qq operators in lattice QCD calculations are cou-
pling to the a0(980) meson. To clear up the many questions about the spectrum of the 0++ scalar
mesons, unquenched lattice QCD calculations with tetraquark interpolating operators are required.
There is “some” evidence that the flavour singlet 0++ interpolating operators, in unquenched lat-
tice QCD calculations, are coupling to states around or below a 1 GeV [50]. Although a continuum
extrapolation is required for definite results and the open decay channel issue needs to be studied.

After all the successful work on algorithms for reducing the mass of the sea quarks in lattice
QCD calculations, we are now starting to study light mesons with open S-wave decay channels. I
presented some evidence from the ETM and MILC collaborations, that the b1 meson has an open
strong decay channel. This type of issue will be of increasing importance for lattice studies of
particles that decay via the strong force. For example, the MILC collaboration [91] claimed to see
problems with the light exotic 1−+ meson, because of an open decay channel. Eventually, the issue
of dealing with resonances in lattice QCD will be dealt with by Lüscher’s technique [92]. Until
then pragmatic approaches to studying strong decays on the lattice are still important. This year
Lüscher’s technique for resonances was applied to the ρ meson for the first time, by the CP-PACS
collaboration [74].

In the past few years the MILC collaboration [24, 25] have been doing the unquenched calcu-
lations with the lightest pions, largest physical volumes, biggest range of lattice spacing. This year
mostly due to algorithm improvements, and partly due to bigger machines other collaborations now
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have lattice QCD results that are comparable to the quality of those from the MILC collaboration.
It is important to do cross-checks on the results from different lattice QCD formalisms, as part of
the quest for errors at the percent level. Many of the older ways to compare results from different
lattice QCD calculations may no longer be appropriate to this high precision era of lattice QCD.
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