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1. Introduction

QCD dynamics at low momenta can be described in terms of a chiral effective theory, which is
formulated by assuming chiral symmetry and its spontaneous breaking. The effective Lagrangian
is expanded as [1 – 3]

L = L
(2)
χ +L

(4)
χ + · · · , (1.1)

where

L
(2)
χ =

F2

4 Tr
[

∂µU†∂µU
]

− Σ
2 Tr

[

eiθ/NfMU +U†
M

†e−iθ/Nf
]

, (1.2)

L
(4)
χ = ∑

i

CiOi. (1.3)

U ∈ SU(Nf) parametrises the pseudo-Goldstone bosons degrees of freedom; Σ and F are the (in-
finite volume) quark condensate and pseudoscalar decay constant in the chiral limit 1; M is the
Nf ×Nf quark mass matrix. For completeness, the dependence on the vacuum angle θ is also
shown. At NLO, 10 terms appear for Nf = 2, whereas L

(4)
χ contains 12 terms for Nf = 3, with

corresponding couplings

{Ci} → li=1..7,hi=1..3 [Nf = 2], (1.4)
{Ci} → Li=1..10,Hi=1..2 [Nf = 3]. (1.5)

A more comprehensive introduction on Chiral Lagrangians has been presented by J. Bijnens at this
conference [4]. F , Σ, {li} ({Li}) are the so-called Low-Energy couplings (LECs): they parametrise
the low-energy dynamics, which is not determined by symmetries and can in principle be derived
from QCD by means of a non-perturbative method. Once the LECs are known, chiral perturbation
theory becomes a powerful predictive framework for investigating low-energy properties. Lattice
QCD represents the ideal tool to match QCD with the chiral effective theory and to extract LECs in
a reliable way; unquenched simulations are now reaching masses and volumes where such a match-
ing can be performed, and many efforts have been made with the final goal to keep all systematic
errors under control.

On a finite volume V = L3T with L � 1/ΛQCD, different chiral regimes can be distinguished.
Approaching the chiral limit by keeping MπL � 1 defines the so-called p-regime, where the power
counting in terms of the momentum p and the quark mass m is given by

m ∼ p2, 1/L, 1/T ∼ p. (1.6)

In this regime, the chiral effective theory in a finite box looks very much like in infinite volume:
finite-volume effects are exponentially suppressed by factors ∼ exp(−MπL), while mass-effects
are dominant.

Alternatively, one can approach the chiral limit by keeping µ = mΣV . O(1); this defines
the so-called ε-regime [5, 6], where the Compton wavelength associated to the pseudo-Goldstone

1In the following F and Σ will refer to the case Nf = 2; for Nf = 3 the notation F0, Σ0 will be used.
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bosons is larger than the linear extend L of the box, MπL < 1 2. In this case the power counting is
reorganised such that

m ∼ ε4, 1/L, 1/T ∼ ε. (1.7)

It follows that mass effects are suppressed, while volume effects are enhanced and become polyno-
mial in L−2. One of the consequences of the rearrangement is that, at a given order in the effective
theory, less LECs appear with respect to the p-regime: the NLO predictions are less contaminated
by higher order effects, making the ε-regime particularly advantageous and clean to compute the
leading order couplings F and Σ. Furthermore, in the ε-regime topology plays a relevant rôle [7].
Observables can be defined at fixed value of the topological charge, and the dependence on this
charge should also be well reproduced by the effective theory. Therefore topology provides a new
variable in this regime, in addition to the mass and the volume. In the infinite volume limit, this
dependence is expected to vanish.

The possibility of matching the chiral effective theory with QCD in different regimes and by
means of different observables opens the chance for several independent determinations of LECs
-with different higher order corrections and systematic errors - from which a precise and first-
principles determination of the LECs can be achieved in the near future.

2. Lattice determinations of LECs in the p-regime

2.1 Nf = 2

In QCD with two flavours, the chiral expansion of the pion mass and pion decay constant at NLO
in the isospin limit is given by [2]

M2
π = M2 +

M4

32π2F2 ln
(

M2

Λ2
3

)

+ · · · , (2.1)

Fπ = F − M2

16π2F
ln

(

M2

Λ2
4

)

+ · · · , (2.2)

with
M2 =

2mΣ
F2 . (2.3)

The scale-independent LECs l3, l4 are defined as

l3,4 ≡ ln
(

Λ2
3,4/M2)

M=139.6 MeV . (2.4)

The values of these parameters extracted from phenomenological analysis are [2, 8 – 10]

F = 86.2(5) MeV, l3 = 2.9(2.4), l4 = 4.4(2). (2.5)

The full NNLO expression for those quantities is also known (see [4]).
In many recent lattice studies with Nf = 2 dynamical fermions the quark mass dependence of Mπ

and Fπ has been studied in order to extract F , Σ, l3, l4. The main characteristics of the different
computations are summarised in table 1, while the results are listed in table 2; notice that the quark

2The case Mπ L < 1 and T � L, corresponding to the so-called δ -regime, will not be considered in this discussion.
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condensate is given in the MS scheme at energy scale 2 GeV.
The first attempt to estimate directly l3,4 from unquenched lattice calculations has been performed
in [11], where two-flavour QCD with Wilson quarks (with and without non-perturbative on-shell
O(a) improvement) has been simulated using DD-HMC algorithm [12, 13]. The authors pointed
out that the extraction of l4 is problematic, since the obtained results are not stable by adding higher
order terms in the NLO fit of the pseudoscalar decay constant. The error quoted in table 2 for l3 is
statistical only.

ETM collaboration is carrying on an extensive project with Nf = 2 Wilson twisted mass quarks
at maximal twist. First results with light quarks have been presented in [14]. Updated results have
been presented at this conference [15, 16] and are reported in table 2; the data have been corrected
for finite-size effects using the extended Lüscher formula [17]. The quoted errors are statistical,
O(a2) effects and finite-size effects respectively. Notice that in this study the scale has been fixed
through the physical values of Mπ and Fπ . See [15, 16] for the complete set of ensembles produced
by the collaboration.

QCDSF and UKQCD are performing Nf = 2 simulations using Wilson fermions with non-
perturbative on-shell O(a) improvement. Several lattice spacings and volumes have been simu-
lated (see [18] for the full list). The data are corrected for O(a2) effects and for finite-size effects
estimated from [17]. The scale in this case has been determined from the axial coupling gA.

Finally, JLQCD presented at this conference the first results obtained with overlap Dirac op-
erator and Iwasaki gauge action [19, 20]. Two kinds of finite volume corrections have been taken
into account: the usual finite volume effect computed according to [17], and the correction due to
fixed topology, according to [21]. Large differences have been observed by adding 2-loop terms
in the chiral fit, with respect to a NLO fit; two different NNLO chiral fits have been tried, and the
relative difference considered as systematic uncertainty (second error in table 2). Here the scale
has been fixed by the condition r0 = 0.49 fm [22].

All these results fairly agree among themselves; although systematic errors need to be better
quantified, we expect them to be under control in the next years, so that the path towards a reliable
computation of LECs of two-flavour chiral theory looks very promising.

The phenomenological impact of the lattice computations of l3, l4 has been discussed recently
by H. Leutwyler [23] ; in particular he considered the S-wave pion scattering lengths aI

0 (I = 0,2),
which can be related to l3, l4 by means of low-energy theorems [9].

2.2 Nf = 2+1

Lattice results obtained with three dynamical flavours can be matched with Nf = 3 chiral perturba-
tion theory in order to extract Σ0,F0,{Li}. In particular, in the three-flavour chiral effective theory,
the quark-mass dependence of pseudoscalar decay constants at NLO contains the LECs L4 and L5,
while pseudoscalar masses are sensitive to the combinations (2L8 −L5) and (2L6 −L4) [3]. More-
over, the same LECs can be extracted from a partially quenched setup [24, 25] (see also [26]).
The current status of phenomenological determinations of the Li has been summarised by Bijnens
in this conference [4]; from a NLO fit one infers

L4 ≡ 0; L6 ≡ 0; 103 ·L5 = 1.46; 103 ·L8 = 1.00. (2.6)
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Mπ,min
Authors Dirac op. gauge act. a (fm) T/a, L/a (MeV)
Del Debbio et al [11] Wilson Wilson 0.0717(15) 32, 24 403

0.0521(7) 64, 32 381
Wilson O(a) impr. Wilson 0.0784(10) 48, 24 377

ETM [15, 16] Wilson Twisted Mass Sym. tree 0.0858(5) 48, 24 300
0.0858(5) 64, 32 300
0.0657(11) 48, 24 420
0.0657(11) 64, 32 300

QCDSF/UKQCD [18] Wilson O(a) impr. Wilson ' 0.08 48, 24 450
' 0.08 64, 32 340
' 0.07 64, 32 440

JLQCD [19, 20] Overlap Iwasaki ' 0.12 32, 16 290

Table 1: Parameters of recent Nf = 2 simulations in the p-regime with light quarks. The second column
refers to the Dirac operator, the third to the gauge action adopted. In the sixth column, Mπ,min indicates the
lightest pion mass reached in the simulations.

Authors F ΣMS(2 GeV) l3 l4
(MeV) (MeV)3

Del Debbio et al [11] 3.0(5)
ETM [15, 16] 85.98(7)(21)(35) 266(6)(0)(6) 3.44(8)(26)(6) 4.61(4)(3)(7)
QCDSF/UKQCD [18] 79(5) 273(12) 3.49(12) 4.69(14)
JLQCD [19, 20] 78(3)(1) 242(6)(6) 2.9(4)(2.6) 4.3(5)(2)

Table 2: Summary of LECs obtained from Nf = 2 simulations.

The parameters related to recent Nf = 2 + 1 lattice simulations are summarised in the top part of
table 3; the corresponding results for the renormalised (2L8 −L5), (2L6 −L4), L4, L5 evaluated at
the scale Mρ = 770 MeV are collected in the bottom part.

The MILC collaboration presented the first results obtained with staggered fermions and fourth
root prescription in 2004 [27]; several updates followed (see for instance the contribution at the
2006 lattice conference [28]) and new preliminary results were presented at this conference [29].
The chiral fits are performed using (partially quenched) rooted staggered chiral perturbation [30]
including analytic NNLO and NNNLO terms. By setting the scale through Fπ they obtain for the
LO constants

Fπ/F2 = 1.052(2)
(

+6
−3

)

, ΣMS
2 (2 GeV) = [278(1)

(

+2
−3

)

(5) MeV]3, (2.7)

Fπ/F0 = 1.21(5)
(

+13
−3

)

, ΣMS
0 (2 GeV) = [242(9)

(

+5
−17

)

(4) MeV]3,

where F0,Σ0 refer to the 3 flavour chiral limit, while F2,Σ2 are obtained by sending mu,md → 0 and
ms → ms,phys. The quoted errors are statistical and lattice-systematic; for the condensates there is
an additional uncertainty coming from perturbative renormalisation.
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Authors Dirac op. gauge action a (fm) L (fm) MPS,min (MeV)
MILC[29] impr. staggered Sym. 1 loop 0.06-0.15 2.4-3.4 200
RBC-UKQCD[33] Domain Wall Iwasaki 0.11 1.8-2.6 330
PACS-CS[35] Wilson O(a) impr. Iwasaki 0.09 2.9 210

Authors (2L8 −L5) ·103 (2L6 −L4) ·103 L4 ·103 L5 ·103

MILC[29] 0.3(1)(1) 0.3(1)
(

+2
−3

)

0.1(3)
(

+3
−1

)

1.4(2)
(

+2
−1

)

RBC-UKQCD[33] 0.247(45) -0.002(42) 0.136(80) 0.862(99)
PACS-CS[35] -0.23(5) 0.10(4) -0.02(11) 1.47(13)

Table 3: On the top: parameters of recent Nf = 2 + 1 simulations in the p-regime. On the bottom: results
for the LECs evaluated at the scale Mρ = 770 MeV.

RBC and UKQCD collaborations presented this year first results for light meson masses and
pseudoscalar decay constants computed with Domain Wall Dirac operator and Iwasaki gauge action
[31]; in this first work, with L ' 1.8 fm and pseudoscalar masses up to 400 MeV, they observed
that a simultaneous NLO fit of pseudoscalar meson masses and decay constants fails. New results
have been presented at this conference, with a larger volume and lighter quark masses [32, 33] (in
particular, MPS,min ' 330 MeV for the full case and MPS,min ' 250 MeV in the partially quenched
setup). By observing that three-flavour fits are not safely applicable in the mass range up to the
kaon mass, they also performed partially quenched SU(2)×SU(2) fits, where only two quarks are
treated as light. To compare the two fits, they derived from both cases the constants l3, l4 using
NLO matching between two- and three-flavour LECs [3], finding compatible results within the
errors.

Finally, PACS-CS collaboration is undertaking Nf = 2+1 simulations with O(a) non- pertur-
batively improved Wilson quarks and Iwasaki gauge action, adopting DD-HMC algorithm; prelim-
inary results were presented at this conference [34, 35].

Given the poor knowledge of systematic errors, a precise comparison of the lattice results at
this point is maybe premature.

3. Determinations of LO LECs in the ε-regime

Lattice simulations in the ε-regime require small quark masses, and in general the preservation
of chiral symmetry at finite lattice spacing would be highly desirable: the spectral gap of the
Dirac operator is then bounded from below and this ensures stability of the dynamical simulations.
However it is a matter of fact that Ginsparg-Wilson fermions are still very demanding from the
numerical point of view, since the construction of the corresponding Dirac operator is very costly
with respect to other regularisations.
On the other hand, for the Wilson Dirac operator the spectral gap is not guaranteed to have a lower
bound and recent studies established an empirical stability condition [36]:

m ≥ mmin; mmin ∝
a√
V

. (3.1)
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In order to reach the region mΣV ≤ 1, still unrealistically large (with the present computing re-
sources) lattice extents would be needed 3.
The spectral gap of the twisted mass Dirac operator is also bounded from below: an attempt to
investigate the ε-regime with this discretisation has been presented at this conference [38].

Another reason that makes the ε-regime particularly challenging is that in the region where
mΣV ∼ O(1) one expects large fluctuations associated to low-modes wavefunctions, which can
induce large uncertainties on the observables. These can be however substantially reduced by
adopting the so-called low-mode averaging technique [39, 40].

At leading order in the ε-expansion, the partition function of the effective theory reads

Z =
∫

SU(N)
dU0 exp

[

ΣV
2 Tr

(

eiθ/N
MU0 + e−iθ/NU†

0 M
†
)

]

, (3.2)

where U0 represents the collective constant field associated to the zero modes. The partition func-
tion at fixed topology ν is obtained by Fourier-transforming in θ :

Zν =
∫

U(N)
dU0 (detU0)

ν exp
[

ΣV
2 Tr

(

MU0 +U†
0 M

†
)

]

. (3.3)

3.1 Quark condensate from finite-size scaling

We consider for simplicity a quark mass matrix proportional to the identity, M = m1Nf , Nf ≥ 2,
and introduce the dimensionless variable µ = mΣV ; the quark condensate for µ � 1 behaves like
[7]

Σ(µ) ≡ Σ
Nf

∂
∂ µ

lnZ ∼ Σµ. (3.4)

As expected, Σ(µ) vanishes in the chiral limit since spontaneous symmetry breaking does not occur
at finite volume. Analogously, at fixed topology one has [7]

Σν(µ) ≡ Σ
Nf

∂
∂ µ

lnZν =
Σν
µ

+ χ̃ν , (3.5)

with χ̃ν =
Σ

2(Nf +ν)
µ + ..., (3.6)

where the infrared divergence proportional to 1/m is due to zero-modes contribution. From these
expressions it is clear that, even if spontaneous symmetry breaking does not occur in a finite vol-
ume, the formation of a quark condensate Σ leaves signs in a finite box and the corresponding
finite-size scaling is predicted by the chiral effective theory.
In particular, χ̃ν is explicitly known up to NLO. The O(ε2) contributions are entirely given by
one-loop corrections to the chiral condensate [6]

Σeff(V ) = Σ
[

1+
N2

f −1
Nf

β1

F2L̂2

]

, (3.7)

where β1 is a known universal shape coefficient [41 – 43] and L̂ = V 1/4. The important point is that
NLO corrections still contain only LO LECs, a typical fact which occur in the ε-regime, as already

3For O(a)-improved Wilson fermions there are first indications that the width of the spectral gap distribution has a
different scaling [37], although definitive conclusions are still missing.
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pointed out in the introduction.
From the QCD side, given a lattice regularisation which satisfies the Ginsparg-Wilson relation, the
quark condensate at fixed topology can be expressed as

−〈ψψ〉ν

Nf
= 2m

∫ ∞

0
dλ

ρν(λ )

m2 +λ 2 =
ν

V m
+ χν , (3.8)

where ρν(λ ) is the spectral density of the Dirac operator and 1/m divergence is exactly the one
founded also in the effective theory. Once renormalised with the logarithmic-divergent renormal-
isation constant ZS, χν can be matched with χ̃ν of eq. 3.6. Notice that at finite mass χν contains
also additive ultraviolet divergences which must be removed in order to perform a finite-size scal-
ing study. Being topology-independent, a convenient solution for this purpose is to consider the
combinations (χν1 − χν2), which have an unambiguous continuum limit at finite quark masses.
Several quenched studies have been performed in order to extract Σ from a finite-size scaling study
4 [44 – 47]. The left side of fig. 1 shows the quantity (χ2−χ3) computed in [47] for two symmetric
volumes V = (1.5 fm)4 and V = (2.0 fm)4, as a function of (mV ). The fact that (χ2 − χ3)/(mV )

does not depend on the volume within the statistical errors indicates that LO scaling is verified,
and there is no sensitivity to NLO corrections. These data have been obtained using low-mode
averaging technique.
The chiral effective theory gives non-trivial parameter-free predictions in the chiral limit, also
known as Leutwyler-Smilga sum rules [7] ; for instance from eq. 3.6 one obtains

χ̃ν1(µ)− χ̃ν2(µ)

χ̃ν3(µ)− χ̃ν3(µ)

∣

∣

∣

∣

µ=0
=

(ν1 −ν2)(ν3 +Nf)(ν4 +Nf)

(ν3 −ν4)(ν1 +Nf)(ν2 +Nf)
. (3.9)

A comparison with the lattice data [47] in the quenched approximation is shown in the right part
of fig. 1, for several values of the topological indices and for three different lattices. The quark
mass dependence of the ratios is weak, and the data refer to a very light quark mass corresponding
to µ ' 0.07. The good agreement supports the fact that the topology dependence of those ratios is
well reproduced by the (quenched) chiral effective theory.

3.2 Meson correlators

The pseudoscalar decay constant can be extracted by matching current correlators in the ε-regime
with the NLO predictions. For example, for the left-handed current correlator at fixed topology

Cab(x0) = Z2
J ∑

~x

〈Ja
L(x)Jb

L(0)〉ν , (3.10)

one obtains the following prediction at NLO [48 – 52]:

Cab(x0) = Tr
[

T aT b
]

{

F2

2T
+

Nf
2T

(

β1√
V
− T 2k00

V

)

+
µΣν(µ)

L3 h1

(x0
T

)

}

, (3.11)

h1

(x0
T

)

=
1
2

[

(

∣

∣

∣

x0
T

∣

∣

∣
− 1

2

)2
− 1

12

]

. (3.12)

4In the quenched limit Σeff(V ) diverges logarithmically with L̂ and hence can be defined only at a finite volume.
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Figure 1: On the left: finite-size scaling of differences (χ2 − χ3), computed at two different symmetric
volumes V = (1.5 fm)4 (black empty squares) and V = (2.0 fm)4 (red filled points) [47]. The data refer to
the quenched approximation, with overlap Dirac operator. On the right: the ratios (χν1 − χν2)/(χν3 − χν4)

for three different lattices considered in [47] compared with theoretical predictions of eq. 3.9.

T a are the SU(Nf) generators, ZJ is the renormalisation constant associated to the left current, β1
and k00 depend on the geometry and Σν(µ) is defined in eq. 3.5. Also in this case, up to NLO
only the LECs Σ and F appear. Current correlators in the ε-regime have been investigated in many
quenched studies [53, 40, 54] using Ginsparg-Wilson fermions. In [40] the JLJL correlator has
been computed both in the ε- and p-regime: here it has been shown that the quenched value of F
obtained in the p-regime after a chiral extrapolation is in agreement with the one extracted from
the ε-regime.

JLQCD presented at this conference preliminary unquenched results obtained with overlap
Dirac operator and Iwasaki gauge action, Nf = 2 [55]. They computed PP, SS, V0V0 and A0A0
correlators at a lattice spacing a = 0.11 fm, V = 163 × 32 and fixed topology ν = 0. Fig. 2
shows the time-dependence of PP and A0A0 correlators, for amsea = amval = 0.002 corresponding
to µ = 0.556. By simultaneously fitting pseudoscalar and axial correlators they obtain

F = 87.3(5.5)MeV, ΣMS(2 GeV) = [239.8(4.0)MeV]3. (3.13)

Pseudoscalar and current correlators have been recently computed in the effective theory at NLO
also for non-degenerate quark masses in the full and partially quenched scenarios, in particular for
the case where all quarks are in the p- or in the ε-regime and for the mixed case, where mvalΣV . 1
and mseaΣV � 1 [56, 57]. These results may be very useful for the future matches of lattice QCD
with the chiral effective theory.
An alternative method to extract pseudoscalar decay constant from two-point correlators in the ε-
regime has been proposed in [58]: by matching residuals of 1/m2 poles with the expectations of
the chiral effective theory, one can extract F by means of zero-modes correlation functions at fixed
non-zero topology.

9
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Figure 2: Pseudoscalar and axial vector correlators computed by JLQCD with overlap Dirac operator, Nf = 2
[55].

3.3 LO LECs from eigenvalue distribution

At LO in the ε-expansion, the partition function at fixed topology is equivalent to the one of a chiral
Random Matrix Theory (RMT) [59 – 62]; it follows that RMT reproduces the same microscopic
spectral density ρSν(ζ ,µ) as the chiral effective theory, in terms of two dimensionless variables
ζ = λΣV and µ = mΣV , where λ are the eigenvalues of the Dirac operator. Moreover, it is possible
to extract the probability distributions of single eigenvalues [63 – 65]:

ρSν(ζ ,µ) =
∞

∑
k=1

pν
k (ζ ,µ). (3.14)

By matching the low-lying spectrum with these expectations

〈λk〉QCD
ν ΣV (µ) = 〈ζk〉RMT

ν (µ) =
∫

dζkζk pν
k (ζk,µ), (λ � F2/ΣL2) (3.15)

one can then extract the low-energy constant Σ.
The low-lying spectrum of the Dirac operator in the quenched approximation has been matched
with the predictions of RMT in many works [66 – 69]. In [68] a detailed comparison has been
made, finding a good agreement for L & 1.5 fm. Starting from this knowledge, several unquenched
computations have been performed in the past years [70 – 73] : their relevant parameters are sum-
marised in table 4. JLQCD/TWQCD [72] performed two separated sets of simulations, in the ε-
and the p-regime; in the last case they studied the sea quark mass dependence of Σ and verified that
its extrapolation to the chiral limit is compatible with the result obtained in the ε-regime. Moreover,
the sea quark mass dependence of ratios of eigenvalues for Nf = 2,ν = 0 is such that close to the
massless limit reproduces the Nf = 0,ν = 2 results (flavor-topology duality), while at heavy masses
becomes compatible with Nf = 0,ν = 0. Notice that in [70, 71] quark masses are still in a regime
where mΣV is considerably larger than 1; nevertheless the observed quark-mass dependence of the
extracted low-energy constant is negligible within the statistical errors. In figure 3 the results of
JLQCD/TWQCD are shown as an example. Ratios of eigenvalues 〈ζk〉/〈ζl〉 are compared with the
expectations of RMT; in particular the central plot corresponds to Nf = 2,ν = 0,µ = 0.556(16);
the left plot refers to Nf = 0,ν = 0 and the right to Nf = 0,ν = 2. The physical results for the quark
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Authors Dirac op. Nf a (fm) L/a,T/a mΣV ν ΣMS(2 GeV)

(MeV)3

[70] overlap 2 0.15 10,10 ' 2-5 0,1 282(10)
[71] chirally impr. 2 0.11-0.13 12,24 ' 5-15 0,1
[72] overlap 2 0.11 16,32 0.556(16) 0 251(7)

0.11-0.12 16,32 ' 7-30 0,2,4
[73, 74] fixed point 2+1 0.13 12,12 ' 1.5 (u,d), ' 13 (s) 0,1,2

Table 4: Summary of simulation parameters of recent Nf = 2 simulations performed to extract the quark
condensate by matching low-lying spectrum with RMT predictions.

 0

 2

 4

 6

 8

 10

2/1

3/1

4/1

3/2
4/2

4/3

Nf=0, Q=0 Nf=2, Q=0 Nf=0, Q=2

(m=3MeV)

Figure 3: Ratios of eigenvalues 〈ζk〉/〈ζl〉 for several k, l computed in [72] compared with expectations of
RMT.

condensate in the MS scheme at 2 GeV are reported in the last column of table 4 5.
An important issue concerning these computations is the estimation of higher order corrections:
the matching with RMT is valid only at leading order and hence no control of higher order effects
is possible. Assuming that finite-volume corrections for Σ are the same as in the chiral effective
theory, one would obtain a systematic error of 31(11) MeV respectively on ΣMS(2GeV)1/3 for
[70]([72]). Another open question is that, while it is clear how the spectral density is renormalised
[36], this is not the case for the individual eigenvalues.
This framework can be extended such that the spectrum of the Dirac operator is sensitive also to

the pseudoscalar decay constant F at LO in the chiral effective theory; a proposal has been made
in [75 – 78]. One considers the eigenvalue equations of the Dirac operator in presence of external
constant Abelian gauge potentials with couplings µiso,1 6= µiso,2:

D1,2ψ(n)
1,2 ≡ [D/(A)+ iµiso,1,2γ0]ψ

(n)
1,2 = iλ (n)

1,2 ψ(n)
1,2 . (3.16)

Translated into the chiral effective theory language, it leads to a modified partition function, which
at LO in the ε-regime reads:

Zν =
∫

U(N)
dU0 (detU0)

ν exp
[

1
4V F2Tr[U0,B][U†

0 ,B]+
1
2ΣV Tr

(

M
†U0 +MU†

0

)

]

, (3.17)

5For [71, 73] the computation of the renormalisation constant ZS is still missing.
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with
B = diag(µiso,11N1 ,µiso,21N2) ; Nf = N1 +N2. (3.18)

Note that the imaginary nature of the chemical potential guarantees a positive definite fermion
determinant. Moreover, generalised Leutwyler-Smilga spectral sum rules can be derived [79].
The same partition function can be obtained starting from a chiral Random Two-Matrix Theory [78]
(R2MT), from which it is possible to compute the spectral correlation functions in the microscopic
limit ρ (Nf)

S,(n,k))({ζ1}n,{ζ2}k) for every Nf = N1 + N2 and (n,k). The predictions from R2MT -or
equivalently from the LO chiral Lagrangian- are now formulated in terms of the rescaled variables
ζ1 = λ1ΣV , ζ2 = λ2ΣV and µ f = m f ΣV . Moreover, the coupling with the isospin chemical potential
introduces a new dependence on the combinations µiso,1,2F

√
V , opening the possibility to extract

F by matching appropriate correlation functions measured on the lattice with the expectations of
the LO effective theory. A typical example is the mixed correlation function

ρ(Nf)
(1,1)(λ1,λ2) = 〈∑

n
δ (λ1 −λ (n)

1 )∑
m

δ (λ2 −λ (m)
2 )〉−〈∑

n
δ (λ1 −λ (n)

1 )〉〈∑
m

δ (λ2 −λ (m)
2 )〉. (3.19)

The effect of having a non-zero chemical potential can be observed for instance in fig. 4 [77], where
the prediction of the microscopic correlation function is plotted in the dynamical Nf = 2 case, with
N1 = N2 = 1, µiso,1 =−µiso,2 = µiso. The variable ζ2 = 4 is fixed, and the ζ1-dependence is plotted:
for µiso = 0 the curve would show a delta-function in correspondence of ζ1 = 4; for µiso 6= 0
one observes a non-zero width. The quark masses in this case would change the height of the
curve. As for the ordinary random matrix theory, it is theoretically possible to extract individual
eigenvalue probability distributions in terms of all density correlators. Truncated expansions have
been investigated and presented at this conference [80].
First numerical tests of the method have been performed in [75, 76], using unimproved staggered
quarks at coarse lattice spacing, both in the quenched and the dynamical Nf = 2 case.
A pilot study with overlap fermions, Nf = 2 [81], has been presented at this conference [82]; a lattice
spacing a ' 0.13 fm has been adopted, with L/a = T/a = 12 and mΣV ' 4. In this work, the case
N1 = Nf = 2, N2 = 0, µiso,1 = 0, µiso,2 = µiso has been considered: it corresponds to a partially
quenched situation, with two sea quarks at chemical potential µiso,1 = 0 and two valence quarks
coupled to µiso. The fit of the integrated correlator yields the results ΣMS(2 GeV) = [234(4) MeV]3

(with finite-volume corrections estimated from chiral effective theory) and F = 101(6) MeV (with
no finite-volume correction).
This method to extract F can be relatively cheap compared for instance to the computation of
current correlators; however, as already mentioned, NLO are not under control and -in absence of
theoretical developments in this sense- simulations at several volumes would be needed in order to
estimate finite-size effects.

4. Conclusions

Lattice QCD simulations are now reaching quark masses and volumes where the matching with
the chiral effective theory can be performed in a reliable way, keeping the different sources of sys-
tematic errors under control. Many results are already available in the p-regime for Nf = 2; from
the NLO quark-mass dependence of Mπ and Fπ it is possible to extract the LECs l3, l4, F and Σ.

12
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=
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Figure 4: The microscopic correlation function ρ (1+1)
S,(1,1)

)(ζ1,ζ2) in eq. 3.19 with µiso,1 = −µiso,2 = µiso,
mu,dΣV = 5, ζ2 = 4 (ξ− in the figure) , as a function of ζ1 (ξ+) [77]. The red dashed curve represents the
µiso = 0 case (with the delta-function omitted), while the black solid curve corresponds to µ 2

isoF2V = 0.05.

Many efforts have been spent to evaluate discretisation errors and finite-volume corrections. Cur-
rent simulations are now reaching pion masses of 300 MeV; in order to control uncertainties from
higher order corrections in the chiral effective theory, lighter quark masses would be needed. With
the recent algorithmic improvements and increasing computational resources, this is a realistic goal
for the next years.
New results are also available from Nf = 2+1 simulations: besides the MILC results, RBC/UKQCD
and PACS-CS presented preliminary studies at this conference, obtained with domain wall and
O(a) improved Wilson fermions respectively. From the quark-mass dependence of pseudoscalar
masses and decay constant it will be possible to give reliable estimations of F0, Σ0, L4,L5,L6,L8.

In the ε-regime, Σ and F can be extracted from observables which at NLO are not contami-
nated by higher order LECs. One can obtain fully independent determinations with respect to the
ones achieved in the p-regime; their agreement is non-trivial test of QCD in the chiral regime. New
unquenched results have been presented at this conference, both for the low-lying Dirac spectrum
and meson correlation functions; although the ε-regime simulations are challenging from the com-
putational point of view, they provide an alternative and complementary approach to the standard
p-regime determinations.

In this review only QCD LECs have been considered; however, lattice computations can be
used for other constants which encode low-energy properties, for instance to evaluate couplings of
the chiral weak Hamiltonian or of the Heavy Meson chiral effective theory.
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