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Computational Requirements of the Rational Hybrid Monte Carlo Algorithm Norman Christ

Recent algorithmic developments have dramatically reduced the computer resources needed
for full QCD calculations which include dynamical light quarks. Specifically Hasenbusch mass pre-
conditioning [1, 2] and the rational hybrid Monte Carlo (RHMC) method of Clark and Kennedy [3,
4] are now essential to the program of the RBC and UKQCD collaborations to generate large en-
sembles of lattice configurations using domain wall quarks [5, 6].

Combining these two methods with the multi-time-step method of Sexton and Weingarten [7]
permits the large molecular dynamics forces associated with the numerous high-momentum modes
(which require a small time step) to be separated from the computationally expensive but relative
weak light quark forces, giving a significant reduction of the cost associated with the light quarks.

We first recall earlier estimates for the computational cost of the hybrid Monte Carlo (HMC)
method. Next, we introduce a more detailed model for the light-quark mass dependence of the
molecular dynamics force with which we predict the scaling behavior of the current Hasenbusch
and RHMC method. These expectations are then compared with the RBC-UKQCD experience [8].

1. Previous Estimates of HMC Computational Cost

We begin by reviewing the standard estimates of the computational cost required for the HMC
algorithm that were discussed, for example, at the Lattice 2001 conference in Berlin [9]. Such an
estimate is provided by the following equation:

Costtotal = C0 · L4 · L · 1
mπ

· 1
ml

· 1
ml

.

(A) (B) (C) (D) (E)
(1.1)

Here the linear size of the system (L), the light quark mass (ml ) and the pion mass (mπ) are all
expressed in lattice units. If the quantities in this expression are put in physical units, one finds:

Costtotal = C1

(
L
fm

)5(
MeV
ml

)2.5(
fm
a

)8

where (1.2)

(A) Total number of lattice sites which appears multiplicatively when counting most of the oper-
ations needed to perform an HMC time step.

(B) Weak volume dependence of the step size expected for the leap-frog integrator.

(C) Critical slowing down of the algorithm, assumed to have a critical index of 1.

(D) Dependence of the size of the time step on the light quark mass. This appears because the
fermion force is expected to grow as 1/ml asml → 0.

(E) Dependence of the number of conjugate gradient iterations on the light quark mass.

2. Fermionic force on the gauge fields

Experience of the RBC and UKQCD collaborations with the generation of domain wall fermion
lattice configurations calls into question the factor (D) above. Typically we have found a much
weaker dependence of the step size on the light quark mass. Thus, a closer look at the quark mass
dependence expected in the fermion force may be warranted. We begin by writing a general ex-
pression for the fermion force as a sum over Dirac eigenvalues. The force acting on the momentum
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Pa
µ(x) conjugate to the linkUµ(x) might be written:

Fa
µ (x) =

(
taUµ(x)

)
αβ

∂
∂Uµ(x)αβ

ln
(

det(D+m)
)

(2.1)

=
(

taUµ(x)
)

αβ

∂
∂Uµ(x)αβ

∑
n

ln(λ 2
n (U)+m2) (2.2)

=
(

taUµ(x)
)

αβ ∑
n

2λn

λ 2
n +m2

∂λn

∂Uµ(x)αβ
, (2.3)

whereta is a color generator and a sum over the fundamental representation indexesα andβ is
understood. In Eqs. 2.2 and 2.3 we have introduced an explicit sum over the Dirac eigenvalues.

Here we have assumed we are sufficiently close to the continuum limit, that we can treat
the eigenvalues and eigenvectors of the lattice Dirac operator as possessing continuum properties.
Thus, as is suggested in Eq. 2.1, we have separated the Dirac operator into a chiral part,D = γµDµ

and the mass termmand we have denoted byλn andψn the eigenvalues and eigenvectors ofD:

Dψ±
n = ±iλnψ±

n . (2.4)

For simplicity we are ignoring the possibility of zero-modes and recognizing that in the continuum
limit the eigenvalues are organized into pairs,±λn, with ψ−

n = γ5ψ+
n .

Next we can use standard, first-order perturbation theory to derive an expression for the deriva-
tives ofλn(U) with respect to the gauge link in theµ th direction located atx.

∂λn(U)
∂Uαβ (x,µ)

=
1
a

ψn(x)α γµψn(x+ µ)β . (2.5)

This expression can be used in Eq. 2.3 and derivatives with respect toU† included to give:

Fa
µ (x) = ∑

n,±

2λn

λ 2
n +m2

1
a

{
ψ±

n (x)†γµtaUµ(x)ψ±
n (x+ êµ ) (2.6)

+ψ±
n (x+ êµ )†γµUµ(x)†taψ±

n (x)
}
.

The factor of the inverse lattice spacing, 1/a, appears here because we are expressing the eigenvec-
torsψn in lattice units but the massm, the Dirac operator and its eigenvalues in physical units.

We will now attempt to use this equation to discuss the possible dependence of the force
Fa

µ (x) on the quark massm. Clearly 1/m behavior is possible from those terms in the sum with
λn ∼ m. We might attempt to distinguish two types of such small-eigenvalue modes. The first are
extended states filling the space-time volume and of order(a/L)4 at the pointx where the force is
being calculated. (The first-order perturbation theory formula used above requires that the wave
functionsψn be normalized to unity over theL4 space-time volume.)

While for largeL the contribution of a single such mode is suppressed by 1/L4, the number
of such modes will grow proportional toL4. This is easily described by introducing the eigenvalue
density per unit space-time volume, per unit energy:ρext(λ ). The total force from those extended
modes with eigenvalues in the interval[λ ,λ + ∆λ ] will then be a3ρext(λ )∆λλ /(m2+ λ 2). The
factor a3 appears because we choose to expressρext(λ ) in physical units. As we approach the
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continuum limit, thisa3 factor becomes very important, reducing the sensitivity of the force and
hence the molecular dynamics step size to the light quark mass.

The second type of mode to consider is a localized mode with the largest contribution to
|ψn(x)|2 coming fromx within a region of radiusR of the mode’s location, where we will also
expressR in physical units. This is the sort of fermion mode that would result from gauge configu-
ration containing an instanton-likecontributionof radiusR. If the place where we are computing the
force lies withinR of the mode’s location, the resulting force will beλ /(m2+ λ 2)(a3/R4). How-
ever, the probability of finding this mode within a radiusR of the point where we are computing
the force isρloc(λ )R4∆λ . Thus, the average contribution of such a mode to the force at a specific
point x might be estimated as the product of these two quantities:a3ρloc(λ )∆λλ /(m2+ λ 2), the
same result estimated above for extended modes.

However, the probability that a large force∝ λ /(m2 + λ 2)(a3/R4) will appear somewhere
in the space-time volume isρloc∆λ L4. Since it is this largest force which determines the largest
allowable step size, this latter estimate is likely the most relevant. This force becomes large only
if R is sufficiently small to compensate for thea3 factor in the numerator. The density of such
modes, localized on the lattice scale, will depend on details of the gauge action and should not
effect physical quantities. In the remainder of this paper, we will assume that these small, localized
modes withR of ordera are not important and consider only the extended modes.

Thus, we adopt the following simple model to describe the mass dependence of the molecular
dynamics force at the sitex:

F(x) =C
∫ λmax

0

λ
m2 +λ 2 a3ρ(λ )dλ (2.7)

Note the upper limitλmax depends on the type of fermions used and will be of orderπ/a. We can
easily estimate the size of the contributions to this integral from two regions:λ ∼ λmax andλ ∼ 0.

For largeλ , we can rely on asymptotic freedom and use a free-field estimate for the eigenvalue
densityρ(λ )≈ (24π2λ 3)/(2π)4 which implies (assuming three colors and a single flavor):

∫ λmax

λmin

a3ρ(λ )
λ

dλ ≈
∫ λmax

λmin

24π2λ 2

(2π)4a3 dλ ≈ 2.4+O(λmina)3 (2.8)

where the lower limitλmin is chosen sufficiently large that the free field form forρ(λ ) is valid for
the entire integration range and the 2.4 is an estimate for Wilson fermions. Alternatively, for small
λ , we can treatρ(λ ) as a constant determined by the Banks-Casher relation,ρ(λ ) = 〈qq〉/π:

∫ Λmax

0
a3 ρ(λ )λ

m2+λ 2 dλ ≈ a3ρ(0)ln(Λmax/m). (2.9)

HereΛmax represents the upper limit of the region whereρ(λ )≈ ρ(0). Comparing Eqs. 2.8 and 2.9,
we expect the largest contribution to the force comes from the much more numerous eigenvalues
λ ∼ 1/a and that the light quark mass dependence is logarithmic and suppressed bya3.

Thus if we return to the computer cost estimates for the standard HMC algorithm and continue
to neglect the possible effects of near zero modes localized on the lattice scale, we conclude that
a more realistic estimate for the cost of generating an independent lattice configuration can be
obtained by dropping the factor (D) from Eq. 1.1 with the result:

Costtotal = C3(
L
fm

)5(
MeV
ml

)1.5(
fm
a

)7. (2.10)
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3. Effects of mass preconditioning

We now apply Hasenbusch preconditioning [1] and add an intermediate, Hasenbusch massM
to the evolution replacing:

det(D+ml )→ det(D+M)det
(D+ml

D+M

)
, (3.1)

whereml is the physical light quark mass. Different step sizes are used for the forces coming from
each factor. For the first factor each step will require inverting a Dirac operator with the massM
while the force resulting from the second term will require an inversion with the massml .

The cost of generating a trajectory arising from each of the resulting two forces can then be
estimated as the product of the cost of the Dirac operator inversion,∝ 1/M or 1/ml , times the force
estimated in the style of the previous section:

Cost= C4

(
L
a

)5 1
mπa

{ 1
Ma

∫ λmax

0

λ
λ 2+M2 a3ρ(λ )dλ +

1
ml a

∫ M

0

λ
λ 2 +m2

l

a3ρ(λ )dλ
}
. (3.2)

Here we have included the overall factor ofL4 for the number of operations,L for the volume
dependence of the step size and the autocorrelation factor 1/mπ to make this easy to compare with
Eq. 1.1. The force coming from the ratio of determinants has been simplified by treating the extra
det(D+M) factor as simply limiting the integration overλ to the region 0≤ λ ≤ M within which
the effects of the two determinants do not cancel.

We can now study Eq. 3.2 to determine the optimal choice for thead hocparameterM. To
make this study easier, we will assume a simple model for the Dirac eigenvalue densityρ(λ ):

ρ(λ ) =

{
1
π〈qq〉 for λ ≤ Λmin

122π2λ 3

(2π)4 for Λmin ≤ λ .
(3.3)

in which we simply join a Banks-Casher constant region and the naive free-field behavior at the
point λ = Λmin. If we use〈qq〉= (250MeV)3, continuity requiresΛmin = 320 MeV.

We can now combine this model forρ(λ ) and with the cost estimate of Eq. 3.2 to determine
the optimal choice ofM. If M is chosen in the region 0≤ M ≤ Λmin we find the minimum is at the
upper limit,M = Λmin, even for a physically light quark mass. ForΛmin ≤ M ≤ λmax, the minimum
occurs forM = (ml π3/3)1/4 which is approximately 1 GeV forml = 0.01/a. For such a value of
M, the dependence of the minimum computational cost on the light quark mass comes from a sum
of terms behaving as〈qq〉a2/ml and 1/(mla)1/4 with the later term roughly twice the former for
ml = 0.01/a.

4. Comparison with 2+1 flavor DWF simulations

Of course, such a simple treatment of the light quark mass dependence of the computational
cost is unlikely to describe an actual situation where other consideration enter as the specific ar-
rangement of terms and algorithms is chosen for a particular calculation. For example, in the case
of the RBC-UKQCD, 2+1 flavor, domain wall fermion (DWF) simulations which we are interested

5
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in modeling, choosing the strange quark mass as the Hasenbusch mass saves sufficient operations
to more than compensate for the resulting non-optimal value ofM.

These 2+1 flavor, DWF simulations are performed using the positive definite operator:

D(m) = DDWF(m)†DDWF(m). (4.1)

HereDDWF(m) is the standard DWF operator with the mass termm connecting the right and left
walls. (The five-dimensional Wilson massM5, the “domain wall height”, is fixed at 1.8 and not
explicitly displayed.) An efficient evolution algorithm with a reduced number of force term calcu-
lations results if the target ratio of determinants is written:

det[D(ml )]det[D(ms)]
1
2

det[D(1)]
3
2

=
det[D(ml)]
det[D(ms)]

· det[D(ms)]
1
2

det[D(1)]
1
2

· det[D(ms)]
1
2

det[D(1)]
1
2

· det[D(ms)]
1
2

det[D(1)]
1
2

(4.2)

Here the determinants in the denominator containing unit quark mass are the Pauli-Villars terms
needed to cancel the contributionsof the naively irrelevant 5-dimensional DWF modes whose num-
bers are enhanced in the limit that extent in the fifth dimension,Ls grows large. The first factor on
the right-hand-side is evaluated using the standard HMC algorithm. The remaining three factors
require the RHMC method.

If we apply the style of cost estimate developed earlier to this use of strange quark mass for
Hasenbusch preconditioning we find:

Cost= C

(
L
a

)5 1
mπa

{
3

msa

∫ Λmax

ms

a3ρ(λ )dλ +
2

mla

∫ ms

0

λ
λ 2+m2

l

a3ρ(λ )dλ
}

(4.3)

≈
(

L
fm

)5 MeV
mπ

(
fm
a

)6
{

C0 +C1

(
MeV
mK

)2(
fm
a

)
+C2

(
MeV
mπ

)2(
a
fm

)2
}

(4.4)

where the factors of 3 and 2 in Eq. 4.3 reflect the three factors of the strange and two factors of
light quark determinant in Eq. 4.2.

To obtain Eq. 4.4, we substitute the ansätz forρ(λ ) given in Eq. 3.3, ignore a slowly varying
ln(ms/ml ) factor and add the constantC0 to account for those parts of the evolution algorithm which
don’t involve Dirac matrix inversion and are hence mass independent. We now use this result to
describe the performance found in the RBC-UKQCD 243× 64 (1/a = 1.73 GeV) and 323× 64
(1/a≈ 2.3 GeV) simulations.

We compare the predictions of Eq. 4.4 with the observed behavior in Table 1. We have chosen
the parametersC0, C1 andC2 to reproduce the computation times listed in the third row of the table.
While the agreement between Eq. 4.4 and the actual performance of the code is not perfect, the
calculated total times agree with those observed to within about 20%.

It is interesting to use the values determined forC0, C1 andC2 to predict the computer resources
needed for a DWF simulation at realistic pion masses and a(6 fm)3 volume. Usinga = 0.86 fm,
a 643×128 volume and a 137 MeV pion we find a predicted total time of 150 Petaflops days to
collect 20,000 molecular dynamics time units: a possible goal for Lattice 2011?

We would like to thank our RBC and UKQCD collaborators with whom this work was per-
formed as well as the University of Edinburgh, PPARC, RIKEN, BNL and the U.S. DOE for pro-
viding the QCDOC computers and other facilities which were essential for this work. This research
was also supported by DOE grants DE-FG02-92ER40699 and DE-AC02-98CH10886.
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Table 1: Execution times for the three parts of the RBC-UKQCD evolution code for the two lattice sizes and
lattice spacings studied. Here “Const” labels those parts of the program not involving Dirac matrix inversion,
“MInv” the time taken by the multimass inverter used for ratios of strange and Pauli-Villars determinants
and “CG” the inversions evaluating the ratio of light and strange determinants. For each double row, the top
row shows the observed times and the lower row the prediction of Eq. 4.4. The third double row is used to
determineC0−C2. Times are given in Teraflops days need to generate 50 molecular dynamics time units.

Volume a ml ml/ms mπ Const MInv CG Tot
(fm) (MeV) (days) (days) (days) (days)

243×64 0.114 0.005 0.186 315 0.21 0.79 0.37 1.4
0.17 0.70 0.37 1.2

243×64 0.114 0.01 0.302 402 0.18 0.70 0.21 1.1
0.17 0.70 0.23 1.1

243×64 0.114 0.02 0.535 534 0.17 0.70 0.13 1.0
0.17 0.70 0.13 1.0

243×64 0.114 0.03 0.767 620 0.17 0.71 0.10 1.0
0.17 0.70 0.09 1.0

323×64 0.086 0.004 0.150 276 0.60 2.5 1.2 4.3
0.50 2.9 1.1 4.5

323×64 0.086 0.006 0.216 330 0.71 2.5 0.90 4.1
0.49 2.9 0.75 4.1
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