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We study a variant of the Schwarz-preconditioned HMC atpari In contrast to the original
proposal of Luscher, we apply the domain decomposition i lattice direction only. This is
sufficient to reduce the condition number of the fermion iRagstricted to the domains com-
pared with the full fermion matrix. For the same linear esien of the domain, less links reside
on the boundaries of the domains. Therefore it becomes eagtigal to iterate the decomposi-
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Wilson gauge action g8 = 5.6 is used. The performance of our implementation is compared
with other recent studies using various types of precooniitig.
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1. Introduction

We consider a system with two degenerate flavours of quagtddtdefined by the partition
function

Z:/D[U]exp(—SG[U]) deM[U]? , (1.1)

whereSsU] = —£5,5,.,Re Tr (UWUHMULO.“UI\,) is the standard Wilson plaquette ac-
tion, X = (X, X1, X2, X3) With x; integer in the range & X < L; are sites on a hyper-cubical lattice,
u,v € {0,1,2,3} are directions on the lattice andis a unit vector inu-direction. The gaugefield
Uy is an element of the grouU(3). In eq. (1.1), the fermion degrees of freedom have been
integrated out, leading to the fermion determinant in thégiwte The Wilson fermion matrix is
given by

MUl =1- KZ {(1— vu) Uu(X) Sy + (14 yu) UZ(X—LAJ) Sy} (1.2)
[

where they,, are the euclidiary-matrices, and is the so called hopping parameter, which is related
with the bare mass of the fermions.

Recently there had been algorithmic progress [1, 2, 3, 4 Hjé simulation of lattice QCD
at light quark masses. In two flavour simulations, follow{eg, the determinant of the fermion
matrix M is represented as déM' 0 [Dg' [ Do exp(—|M~1¢|?), whereg is the pseudo-fermion
field andSys = IM~1g|? the pseudo-fermion action. The basic idea of [1, 2, 3, 4, & shose al-
ternative representations of the fermion determinantenkeleping the Hybrid Monte Carlo (HMC)
algorithm unchanged otherwise. To this end, the fermiorrimast factorizedM = ;W such that
the factordM have a smaller condition number than the fermion mattiitself. A pseudo-fermion
field is introduced for each of the factors

n
deMMT:r!deW.WiT D/Dcp{/qul /D@/D@.../D@I/D% exp(— Y W tal?) .
- | (1.3)
The effect of this splitting is two-fold: The noise of the gbastic representation of the fermion
matrix is reduced compared with the standard pseudo-ferantion and furthermore, the splitting
of the action allows to compute numerically expensive pads frequently, as suggested in [7].
Here we discuss a variant of the Schwarz-preconditioned HiMiCforward by Liischer [4].
While in the other cases [1, 2, 5] the factd¥scan be written as a function of the fermion matrix,
here a spatial decomposition is the basis for the factaizat
The lattice is decomposed into blocks of the dige |1 x |5 x I3, with I, < L. An approxi-
mationW; of M is obtained by eliminating the hopping termshhthat connect different blocks.
Liischer [4] made the important observation that (M) can be estimated by using a pseudo-
fermion field that resides on the boundaries of black bloakg flets assume a red/black decom-
position of the blocks.). Furthermore in egs. (3.12,3.%3®phe shows how the force due to the
pseudo-fermion action for d%{W{lM) can be computed efficiently. In the following we shall use
these results without any modification; also the result gb&mlix B of [4] is used in the following
to reduce the dimension of the pseudo-fermion field by half.
Here we consider a block-decomposition in one dimensiog, @aly the temporal direction.
le. I, =Ly, for p=1,23. The reasons to study this special case are the followinghea
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implementation becomes much simpler; mainly because treréo sites in a corner of block.
b) At least for the lattice spacings currently investigatdte fraction of links on the boundary
between blocks is much less; therefore the number of adtiks,li.e. those links that take part
in the molecular-dynamics evolution is larger. ¢) The sifigation enables us to iterate the block
decomposition.

Disadvantages of the one-dimensional decomposition ateittis less useful for a massive
parallelization of the program and what might be more imgoatt for the samdy the condition
number ofWy might be larger than for a decomposition in all four direcio However the ex-
perience with Schrodinger functional boundary conditisnggests that still there is a substantial
reduction of the condition number @, compared tav.

In our numerical experiments, we have iterated the decoitiposwice. In the simulations
discussed below, we have chosléH = Lo/2 for the first step andiéz) = Iél)/Z = Lo/4 for the
second step of the decompositidid. denotes the fermion matrix restricted to the blocks of I%ji%e
ForW, we have used even-odd and mass-preconditioningVi3k, = W g0+ p. |.€. the pseudo-
fermion action consists of four part&, 3, S, S, representing the squares of the determinant of
MW, WAWG L, W ey & andW e, respectively. Note the counter-intuitive connectionnlesin
the labels of th&and thew. S is given by the gauge action.

2. Integration with multiple time scales

The basic steps of the integration scheme are given by
Tu(AT) : U - €4PU  and Tpj(AT) : P—P—iAT&S(U) (2.1)

wheredy denotes a variation with respect to the gauge fields. Frosethasic steps we can build
elementary leap-frog steps

TLro(ATo) = Tro (%) Tu (ATo) Teo (%) (2.2)

or steps of an improved scheme (here we follow [7]):
AT AT,
Towo(ATo) = Tpo (AAT) Ty <7°> Tro([1— 2A]ATo) Ty <7°> Tro(AATy)  (2.3)

with A =1/6. Note that in an elementary step of this scheme, the vamiafithe action with respect
to the gauge-fields has to be computed twice. This schemesslglrelated with the second order
minimum norm scheme (2MN) studied in [8]. The only differens the choicel ~ 1/5in [8]. &

is the part of the action with the largest forces. Elementatggration steps that include pas
of the action that have smaller forces are now constructeatseely as

AT; _ AT;
Tk j(AT)) = Tpj <7J> [Tx,j-1(ATj_1)]"1 Tp; <7J> (2.4)

in the leapfrog case and

Tow;j (A7) = Tpj (AAT)) [Tx,j—1 (ATj-1)]"2/2 Tpj ([1— 2A]AT)) [Tx j-1(ATj-1)]"Y2 Tpj (AAT))
(2.5)
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in the improved case. The step sizes of the different levelsedated ad1; = nj_1AT1j_1. In both
casesX can be either leap frod-F) or the improved schem&y\). This means that for different
time scales, different integration schemes can be use@ Wehave used the leapfrog scheme for
the levelsj = 2,3,4 and the improved one fgr= 0,1. A full trajectory is given byl g 4(A14)™.

In the case of the Schwarz-preconditioning, the force duthegpseudo-fermion action de-
pends quite strongly on the position of the gauge link wigpeet to the boundaries of the blocks.
l.e. here onxg. Therefore, as discussed in [4], one might chose a step lstalépends on the
position, such that the step size times the force is rougbhstant. As we shall see below, the
force is the largest close to the boundaries of the block®réfbre, we have used the following
schemes:

(A) In the case oty = 24 we have used(Xp) = 0.2, 05, 1, 1, 05 and 2 forxg =0, 1, ..., 5 for the
space-like links and(xp) = 0.2, 0.5, 1, @5, 0.2 and 0 forxp = 0, 1, ..., 5 for time-like links. This
scheme is then repeatesixy + 6n) = s(xg), wheren € 1,2, 3.

(B) for Lo =32 is given bys(xp) =0, 05,1, 1,1, 1, ® and 0, forxg =0, 1, ..., 7 for the space-like
links ands(0) =0, 05,1, 1,1, 05, 0 and O forxg =0, 1, ..., 7, for time-like links. This scheme is
then repeateds(xo + 8n) = s(xp), wheren € 1,2, 3.

(C) for Lo = 32 is given bys(0) =0, 025,05, 1, 1,1, 1, ®5, 025, 1, 1, 1, 1, ®, 0.25, O, for
X0 =0, 1, ..., 15 for the spatial links arsl0) = 0, 0, 025, 05, 1, 1, 025, 0, 025, 1, 1, 1, G5, 0.25,

0, 0forxp =0, 1, ..., 15 for the time-like links. Fog > 15: s(xp) = S(Xo — 16).

Note that the blocks of the first decomposition run fregn= 0 up toLy/2 —1 and from
Xo = Lo/2 up toLp— 1. For the scheme (A) the averagesalver all links is 0525. For the schemes
(B) and (C) it is about 9. The actual step size for a given linkAs quoted below times(xo).

In order to ensure ergodicity of the update, the configunacshifted in time direction after each
trajectory.

3. Numerical results

We have simulated the Wilson gauge actiof8at 5.6 with Wilson fermions using the values
of the hopping parametek = 0.1575, 01580 and (15825. These parameters are chosen such
that we can compare our results with [4, 5, 9, 10]. Following literature, these bare parameters
correspond roughly to a pseudo-scalar mass of 690 MeV, 490 e 370 MeV. Note that in the
real world the pion mass i®;; ~ 135 MeV. The lattice spacing is abouBdm.

As solver we have used the geometric seriesSioIS, andS; and the BiCGstab solver with
even-odd and Schwarz-preconditioning far The basic parameters of our runs are summarized
in table 1. The parameters of the algorithm have been chasgnthat roughly the number of
steps of the solver is the same for each part of the pseudueieraction. The typical length of our
runs is 2000 trajectories after equilibration up to aboui®Gajectories for the runs with = 12.

On 8 CPUs (Opteron 2.2 GHz) of a Cray XD1 computer one trajgdtw the 32x 24° lattice at

k = 0.15825 took about 2.5 hours. Note that in our program the Dserator runs with less than
one Gflops per processor and the sub-optimal choice of soar CPU time can be compared
with about 03 hours [4] (from fig. 7) on 8 nodes with two 2.4 GHz Xeon CPUdedtote that in
this case the trajectory length is onty= 0.5 and also the number of active links is about half of
ours.
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Table 1: Basic parameters of our rurR is the acceptance rate at the end of the trajectory. S detiates
scheme used for the dependence of the step sizeis the parameter of the mass preconditioning.

Lo |L=Li=L=L3 | S K p Ng | N3 | N | N | No Pacc
24 12 A 101575 |015|6 |1 |2 |2 |4 |0.892(2)
24 12 A 01580 |015(6 |1 |2 |2 |4 |0.916(2)
32 16 B|01575 | 0204 |1 |3 |2 |4 |0.704(5)
32 16 B|0.1580 |0.15|5 |1 |3 |2 |4 |0.826(4)
32 16 B |0.15825/0.15|5 |1 |3 |2 |4 | 0.826(4)
32 24 B |0.15825/0.15|7 |1 |3 |2 |4 |0.83(2)
32 24 C 015825/ 0155 |3 |2 (2 |4 |0.8754)
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Figurel: We give the average force on spatial links as a functioxyoFor a discussion see the text

In fig. 1 we give the average forces on the spatial links as etifum of xg. The largest force is
obtained for the gauge action. The forces dugtandS, display a strong dependence an They
are largest at the boundaries between the blocks. In theof&ethey assume their minimum in
the middle of the block. In the case 8f the minimum is located at the boundaries of the blocks
of the first decomposition. Note that the minimum of the fallce t0S; is much smaller than that
of the force due t&;.

The step sizes needed to obtain a sufficient acceptancearatieccompared with results from
the literature. Here we give only a small selection: Usiragndard HMC, the authors of [10] need
the step sizé\t = 0.006 fork = 0.1580 on a 3% 16° lattice to getPacc = 0.66. Note that in this
case the pseudo-fermion action is computed with the fermmatrix itself and not with the even-
odd preconditioned one. Our most difficult case, the«Z2° lattice atk = 0.15825 we compare
with [4] who needsAt = 0.05 to reachP,cc = 0.86 and [9], using mass preconditioning, where
AT = 0.1 is needed to gd®,.c = 0.8. In [5] AT = 0.25 is used in combination with a fourth order
minimal norm integrator.
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Figure 2: History of the plaquette average and the number of stepseo$dlver. The red line gives the
average of the plaquette obtained in [10] in the cask f16 andk = 0.1575 and [4, 12] in the case of
L =24 andk = 0.15825.

In order to judge the performance of an algorithm autocati@h times for the quantities of
interest have to be determined. This is however a notogdwsid problem in HMC simulations of
QCD with dynamical fermions.

In fig. 2 we give the evolution of the plaguette value and thenper of steps taken by the
solver for the simulation of a 32 163 lattice atk = 0.1575. The run started from a configuration
equilibrated by a different version of HMC algorithm. Thefsl give no indication for autocorrela-
tion times that are comparable with the length of the rurifit¥ee gettp = 8(2) and 5oy = 16(5)
as integrated autocorrelation times of the plaquette amduimber of steps of the solver. The time
unit is given by a trajectory. These numbers can be compaitadw= 7(4) andtso, = 33(4) for a
standard HMC simulation [10] argp = 68(25) and 1so)y = 16842) for a Schwarz preconditioned
HMC simulation [4]. Note that in [4] the trajectory lengthis= 0.5 and only about 37% of the
links are active. This might trivially explain a factor of@it 4 compared with our simulation. One
also should note that the authors of [11] find that even laggectory lengths such as= 2 are
advisable to obtain optimal performance.

In the case ol = 24 andk = 0.15825 we do not quote values for autocorrelation times.
The time histories of the average plaquette and the numbssleér steps suggests that there are
correlations that are comparable with the length of our nueven larger. Note that the authors of
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[4, 5, 9, 12] do not see such problems and quote rather smabvaf the autocorrelation times.
Taking into account the length of the trajectory and thetioaicof active links, our run is of similar
length as that of [12]. One should take into account the posgithat [4, 5, 9, 12] do not see these
large autocorrelations since their runs are too short.

4. Conclusions and outlook

Using preconditioned pseudo-fermion actions [1, 2, 3, 4th8] problem that the step size
needed to obtain a reasonable acceptance rate decrealsetewrtasing fermion mass seems to
be overcome. The performance of the different proposalmsde be quite similar. Still the
dependence of autocorrelation times related to small e&ees of the fermion matrix on the
choice of the pseudo-fermion action is not well understodd. this end, it might be useful to
monitor e.g. the topological charge. Likely also much langms then those presented here and
in [5, 9, 12] are needed to this end. A disadvantage of the S&chwreconditioning is that it is
quite hard to implement fermion actions that are more carafdid than clover-improved Wilson
fermions. Since in the case of Schwarz-preconditioningoeudo-fermions reside on boundaries
only, it is possible that the performance of the HMC scaléedintly (hopefully better) with the
lattice spacing than for the other types of preconditioning
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