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Speeding up HMC with better integrators
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We discuss how dynamical fermion computations may be made yet cheaper by using symplectic
integrators that conserve energy much more accurately without decreasing the integration step
size. We first explain why symplectic integrators exactly conserve a “shadow” Hamiltonian close
to the desired one, and how this Hamiltonian may be computed in terms of Poisson brackets. We
then discuss how classical mechanics may be implemented on Lie groups and derive the form of
the Poisson brackets and force terms for some interesting integrators such as those making use of
second derivatives of the action (Hessian or force gradient integrators). We hope that these will
be seen to greatly improve energy conservation for only a small additional cost and that their use
will significantly reduce the cost of dynamical fermion computations.
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1. Symplectic Integrators

We are interested in finding the classical trajectory in phase space of a system described by the
Hamiltonian H(q, p) = T (p)+ S(q) = 1

2 p2 + S(q). The idea of a symplectic integrator is to write
the time evolution operator as

exp
(

τ
d
dt

)
= exp

(
τ

{
d p
dt

∂

∂ p
+

dq
dt

∂

∂q

})
≡ eτĤ

where the vector field

Ĥ =−∂H
∂q

∂

∂ p
+

∂H
∂ p

∂

∂q
=−S′(q)

∂

∂ p
+T ′(p)

∂

∂q
≡ Ŝ + T̂ .

Since the kinetic energy T is a function only of p and the potential energy S is a function only of
q it follows that the action of eτ Ŝ : f (q, p) 7→ f (q, p− τS′(q)) and eτT̂ : f (q, p) 7→ f (q+ τT ′(p), p)
are just translations of the appropriate variable.

We now make use of the Baker–Campbell–Hausdorff (BCH) formula, which tells us that the
product of exponentials in any associative algebra can be written as ln(eA/2eBeA/2)− (A + B) =
1

24

{
[A, [A,B]]−2[B, [A,B]]

}
+ · · · where all the terms on the right hand side are constructed out

of commutators of A and B with known coefficients. We find that for a simple PQP symmetric
integrator with step size δτ the evolution operator for a trajectory of length τ may be written as

UPQP(δτ)τ/δτ =
(

e
1
2 δτ ŜeδτT̂ e

1
2 δτ Ŝ

)τ/δτ

=
(

exp
[
(T̂ + Ŝ)δτ − 1

24

(
[Ŝ, [Ŝ, T̂ ]]+2[T̂ , [Ŝ, T̂ ]]

)
δτ

3 +O(δτ
5)
])τ/δτ

= exp
[
τ

(
T̂ + Ŝ− 1

24

(
[Ŝ, [Ŝ, T̂ ]]+2[T̂ , [Ŝ, T̂ ]]

)
δτ

2 +O(δτ
4)
)]

.

2. Shadow Hamiltonians

For every symplectic integrator there is a shadow Hamiltonian H̃ that is exactly conserved;
this may be obtained by replacing the commutators [Ŝ, T̂ ] in the BCH expansion with the Poisson
bracket {S,T} ≡ ∂S

∂ p
∂T
∂q −

∂S
∂q

∂T
∂ p [1]. For example our PQP integrator above exactly conserves the

shadow Hamiltonian H̃ ≡ T +S− 1
24

(
{S,{S,T}}+2{T,{S,T}}

)
δτ2 + · · ·.

We now make the simple observation that any symplectic integrator is constructed from the
same Poisson brackets, and that these Poisson brackets are extensive quantities. We therefore
propose to measure the average values of the Poisson brackets and then optimize the integrator
(by adjusting the step sizes, order of the integration scheme, integrator parameters, number of
pseudofermion fields, etc. [2, 3]) offline so as to minimize the cost. This is possible because the
acceptance rate and instabilities are completely determined by δH = H̃ −H.

As a very simple example consider the minimum norm PQPQP integrator

UPQPQP(δτ)τ/dt =
(

eα Ŝδτe
1
2 T̂ δτe(1−2α)Ŝδτe

1
2 T̂ δτeα Ŝδτ

)τ/dt
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Flat Manifold General

Symplectic 2-form d p∧dq ω : dω = 0

Hamiltonian vector field Ĥ = ∂H
∂ p

∂

∂q −
∂H
∂q

∂

∂ p dH = iĤω

Equations of motion q̇ = ∂H
∂ p , ṗ =− ∂H

∂q
d
dt

∣∣
σ

= Ĥ

Poisson bracket {A,B}= ∂A
∂ p

∂B
∂q −

∂A
∂q

∂B
∂ p {A,B}=−ω(Â, B̂)

Table 1: Comparison of quantities in flat space and on a general manifold [1].

whose shadow Hamiltonian is

H̃ = H +
(

6α2−6α +1
12

{S,{S,T}}+
1−6α

24
{T,{S,T}}

)
δτ

2 +O(δτ
4).

With only one degree of freedom α we cannot completely eliminate the coefficient of the O(δτ2)
contribution, however, we may optimize this integrator by setting the parameter α = 1

2 + 1
4
〈{T,{S,T}}〉
〈{S,{S,T}}〉 .

There have been alternative optimization strategies proposed: minimizing the L2 norm of coeffi-
cients assuming |{S,{S,T}}|= |{T,{S,T}}| [4], and setting the coefficient of one of the two Pois-
son brackets to zero by choosing α = 1

2(1− 1√
3
) or 1

6 . However, these strategies clearly break down

when optimizing higher order minimum norm integrators, i.e., for O(δτ4) integrators there are 6
Poisson bracket contributions that must be considered (see Table 3).

3. Hessian Integrators

We now make another simple observation: consider again the PQPQP integrator, where we
set α = 1

6 so that the {T,{S,T}} contribution is eliminated. The remaining leading order Pois-
son bracket {S,{S,T}} depends only on q, which means that we can evaluate the integrator step

e ̂{S,{S,T}}δτ3
explicitly (it is again just a shift of p). The force for this integrator step involves sec-

ond derivatives of the action, and therefore they are called Hessian or force gradient integrators
[5, 6]. By putting such an integration step into a multistep integrator we can eliminate all the lead-
ing O(δτ2) terms in δH. The advantage of such an integrator over that of Campostini [7, 8] is that
the coefficients of the next order terms are approximately two orders of magnitude smaller (see Ta-
ble 3). We want to stress that although eliminating the leading term must be best asymptotically as
δτ → 0 it might well not be the optimal solution in practice; the optimal solution may be obtained
by minimizing δH as discussed in §2.

4. Beyond Scalar Field Theory

We now have to construct the Poisson brackets and Hessian integrators for gauge fields, where
the field variables are constrained to live on a group manifold. To do this we need to use some
differential geometry. Table 1 summarizes the difference between the formulation on flat space
that we have discussed up to this point and that on general manifolds.
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In order to construct a Hamiltonian system on a manifold we need not only a Hamiltonian
function but also a fundamental closed 2-form ω . On a Lie group manifold this is most easily
found using the globally defined Maurer–Cartan forms {θ i} that are dual to the generators and
satisfy the relation dθ i = − 1

2 ci
jkθ j ∧ θ k, where ci

jk are the structure constants of the group. We
choose to define ω ≡ −d ∑i θ i pi = ∑i(θ i ∧ d pi − pidθ i) = ∑i(θ i ∧ d pi + 1

2 pici
jkθ j ∧ θ k). Using

this fundamental 2-form we can define a Hamiltonian vector field Â corresponding to any 0-form
A through the relation dA = iÂω , and in the natural coordinates (ei,

d
d pi ) on the contangent bundle

this gives

Â = ∑
i

(
∂A
∂ pi ei +

[
∑
jk

ck
ji p

k ∂A
∂ p j − ei(A)

]
∂

∂ pi

)
. (4.1)

The classical trajectories σt = (Qt ,Pt) are then the integral curves of this vector field, σ̇t = Â(σt).

5. Putting It All Together

Recalling that H = S + T we can compute the Hamiltonian vector fields corresponding to S
and T using equation (4.1), and from these we can evaluate the lowest-order Poisson bracket

{S,T}=−ω(Ŝ, T̂ ) =−(θ i∧d pi + 1
2 pici

jkθ
j ∧θ

k)(Ŝ, T̂ ) =−piei(S) =−ReTr
(

∂S
∂U

PU
)

,

and the Hamiltonian vector field corresponding to it,

{̂S,T} = ∑
i

(
∂{S,T}

∂ pi ei +

[
∑
jk

ck
ji p

k ∂{S,T}
∂ p j − ei({S,T})

]
∂

∂ pi

)

= −ei(S)ei +
[
−ck

ji p
ke j(S)+ p jeie j(S)

]
∂

∂ pi .

From this we can derive expressions for the third- and fifth-order Poisson brackets that are needed
for symmetric symplectic integrators, and these are listed in Table 2. Similarly, we can then evaluate
the corresponding Hamiltonian vector fields for any Poisson brackets we wish to include in the
integration (e.g., ̂{S,{S,T}} for force gradient integrators).

The explicit form of the shadow Hamiltonian for a variety of integrators is show in Table 3.

6. Conclusions

Our work in this area is still very preliminary, so far we have concentrated on developing these
ideas. Future work shall focus on implementing and testing the performance of these integrators
for dynamical fermion calculations. We expect that modest gains in performance can be expected
through directly measuring the leading order Poisson brackets to optimize the minimum norm
family of integrators. However, we hope that very significant performance improvements can be
obtained from force gradient integrators.
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{S,{S,T}} ei(S)ei(S)

{T,{S,T}} −pi pkeie j(S)

{S,{S,{S,{S,T}}}} 0

{{S,T},{S,{S,T}}} −2ei(S)e j(S)eie j(S)

{{S,T},{T,{S,T}}}
3ci

jk pi p`e j(S)[eke`(S)+ e`ek(S)]

+pi p j
[
ek(S)ekeie j(S)− [ekei(S)+ eiek(S)]eke j(S)

]
{T,{S,{S,{S,T}}}} 0

{T,{T,{S,{S,T}}}} 2pi p j[eie jek(S)ek(S)+ eiek(S)e jek(S)]

{T,{T,{T,{S,T}}}} −pi p j pk p`eie jeke`(S)

Table 2: Poisson brackets required for symmetric symplectic integrators.
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Integrator Update steps Shadow Hamiltonian

PQP e 1
2 δτ Ŝ eδτ T̂ e 1

2 δτ Ŝ T +S− δτ2

24

(
{S,{S,T}}+2{T,{S,T}}

)
QPQ e 1

2 δτ T̂ eδτ Ŝ e 1
2 δτ T̂ T +S + δτ2

24

(
2{S,{S,T}}+{T,{S,T}}

)
PQPQP

α = 1
6

[6, 4, 3]

e
1
6 δτ Ŝ e 1

2 δτ T̂

× e 2
3 δτ Ŝ

× e 1
2 δτ T̂ e

1
6 δτ Ŝ

T +S + δτ2

72 {S,{S,T}}

PQPQP

α = 1
2(1− 1√

3
)

[6, 4, 3]

e
3−

√
3

6 δτ Ŝ e 1
2 δτ T̂

× e
1√
3

δτ Ŝ

× e 1
2 δτ T̂ e

3−
√

3
6 δτ Ŝ

T +S +
√

3−2
24 δτ2{T,{S,T}}

Campostrini

[7, 8]

exp
(

3√4+2 3√2+4
12 δτ T̂

)
× exp

(
3√4+2 3√2+4

6 δτ Ŝ
)

× exp
(

− 3√4−2 3√2+2
12 δτ T̂

)
× exp

(
− 3√4+2 3√2+1

3 δτ Ŝ
)

× exp
(

− 3√4−2 3√2+2
12 δτ T̂

)
× exp

(
3√4+2 3√2+4

6 δτ Ŝ
)

× exp
(

3√4+2 3√2+4
12 δτ T̂

)

T +S

+ δτ4
34560



−(40 3√4+40 3√2+48) {S,{S,{S,{S,T}}}}

+(180 3√4+240 3√2+312) {{S,T},{S,{S,T}}}

+(60 3√4+80 3√2+104) {{S,T},{T,{S,T}}}

+(−20 3√4+8) {T,{S,{S,{S,T}}}}

+(20 3√2+32) {T,{T,{S,{S,T}}}}

+(5 3√2+8) {T,{T,{T,{S,T}}}}



Force

Gradient

#1

[5, 6]

e
1
6 δτ T̂ e 3

8 δτ Ŝ e 1
3 δτ T̂

× e
48δτ S−δτ3 ̂{S,{S,T}}

192

× e 1
3 δτ T̂ e 3

8 δτ Ŝ e
1
6 δτ T̂

T +S

+ δτ4
6635520



2259 {S,{S,{S,{S,T}}}}

+3024 {{S,T},{S,{S,T}}}

+768 {{S,T},{T,{S,T}}}

+5616 {T,{S,{S,{S,T}}}}

+4224 {T,{T,{S,{S,T}}}}

+896 {T,{T,{T,{S,T}}}}



Force

Gradient

#2

e
6

δτ
Ŝ e

2
δτ

T̂

× e
48δτ S−δτ3 ̂{S,{S,T}}

72

× e
2

δτ
T̂ e

6
δτ

Ŝ

T +S

− δτ4
155520



41 {S,{S,{S,{S,T}}}}

+36 {{S,T},{S,{S,T}}}

+72 {{S,T},{T,{S,T}}}

+84 {T,{S,{S,{S,T}}}}

+126 {T,{T,{S,{S,T}}}}

+54 {T,{T,{T,{S,T}}}}


Table 3: A collection of integrators with the leading terms in their exactly conserved shadow Hamiltonians.
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